

LibreOffice WASM - the How and Why

A status report from the journey to get LibreOffice into the
browser, fully*

WASM & other neat hacks to make
that Happen

FOSDEM virtual conference, 2021-02-07

Jan-Marek Glogowski - glogow@fbihome.de

Thorsten Behrens – thb@libreoffice.org

mailto:glogow@fbihome.de
mailto:thb@libreoffice.org

The State of the Art

Currently (LOOL/COOL):
● HTML5-canvas based browser version
● lightweight, tiled rendering
● the heavy lifting happens on the server
● all documents of all users loaded there
● all rendering & editing happens in the data center
● Pros:

– light on the client
– documents stay on-premise
– ~easy collaborative editing – just one document instance to keep up-to-date

● Cons:
– no offline mode
– expensive to host
– no peer2peer editing, or end2end encryption possible

Pain points of LOOL’s architecture

● price of hosting
● cost of operations - not trivial to host & scale
● noticeable costs per user, if you want to run it planetary-

scale
● code & technology - two separate repos, but cross-cutting

changes often required

So what to do?

Idea: LibreOffice WebAssembly - lets call it LWA henceforth!
● looking at the trajectories of hardware (mobile/laptop)

– your phone: CPUs with 8 core, up to 2GHz; 12GB RAM on the high-end
– Ultrabooks with 32GB and 12-thread i7... – port the core to a new

architecture! the new platform is … the browser! i.e. WASM – compile
native code to run in your browser; W3C standard since end of 2019 –
use a WASM core - LibreOffice cross-compiles to WASM (like we do for
Android, iOS, Windows ARM etc)

– use platform APIs whereever feasible (crypto, IO, network) for speed &
weight reasons

Architecture & battle plan

● but, we tried that – it didn’t work?!
● we gave up, as in 2015 emscripten/WASM couldn’t even do exceptions

properly
● stars are aligned now - WASM is W3C standard, with wide browser support

– nothing missing really anymore (except perhaps threading)
– SharedArrayBuffer currently disabled due to Spectre (but hey..)

● What needs doing? low-level cross building port big blobs to use browser
APIs (NSS, I look at you!)

● strip down the monolith (target only Writer for a start)

The technical challenges

And the evolving landscape

WASM

● 2GB limits - size of the binary likely not feasible to load 100MB of WASM & survive
● 32bit address space
● browser disabled SharedArrayBuffer after Spectre exploits
● WASM thread support still being cooked: https://github.com/WebAssembly/threads
● default-off in browsers, but can be turned on
● https://github.com/emscripten-core/emscripten/wiki/Pthreads-with-WebAssembly
● so - for the moment, use WebWorkers/ServiceWorkers and message passing, if you

need multithreading...
● then again, Writer is single-threaded since 1990

https://github.com/WebAssembly/threads
https://github.com/emscripten-core/emscripten/wiki/Pthreads-with-WebAssembly

Hacking tools & resources

● https://anonyco.github.io/WasmFiddlePlusPlus/ for playgrounds
● or this one: https://mbebenita.github.io/WasmExplorer/ &

https://webassembly.studio/
● https://webassembly.studio/
● https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_Ja

vaScript_API
● some debugging support in FireFox:

https://www.youtube.com/watch?v=R1WtBkMeGds
● best experience so far in Chromium:

https://developers.google.com/web/updates/2020/12/webassembly

https://anonyco.github.io/WasmFiddlePlusPlus/
https://mbebenita.github.io/WasmExplorer/
https://webassembly.studio/
https://webassembly.studio/
https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_API
https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_API
https://www.youtube.com/watch?v=R1WtBkMeGds
https://developers.google.com/web/updates/2020/12/webassembly

Current WASM status

● https://wiki.documentfoundation.org/Development/WASM
– boils down to: feature/wasm + README.wasm

● emsdk and qt5 WASM is integrated with gbuild
● static dependency resolver (solenv/gbuild/statics.mk)
● few binaries (vcldemo, ui-ppreviewer) are build, so are

some cppunit tests

“Everything” builds but nothing runs yet, except for: wasm-
qt5-mandelbrot (demo)

https://wiki.documentfoundation.org/Development/WASM

Major emscripten, gbuild and LO
problems

Looking into major problems

● gbuild: linking static executables
● LO: code dependency loops
● LO: static UNO components
● emscripten: no CPU limit for wasm-opt

● some problems still to tackle

(+ all the still unknown stuff)

gbuild: linking static executables

● All link info private to the gbuild link targets
● No transitive information available
● Android and iOS: bin/lo-all-static-libs

– just one binary; collect and throw everything to the linker

Implementation:
● Register all dependencies per linktarget in variables
● traverse the dependency tree to fill all libraries, externals

and statics
● cache them, so "make <module>" will still work

LO: code dependency loops

● Normally loops are broken up by using dlopen
– sc <=> scui, sw <=> swui, vcl <=> vclplug_* + filters/gie, sal

<=> sal_textenc

Implementation: loader + plugin concept
● plugins register with a loader library
● executables must link to plugins, if they link to loaders

– needs a dynamic dependency, just if the loader library
dependency exists in the tree

– done while traversing the dependency tree for static execs

LO: static UNO components

● dlopen'ed and instanciated dynamically
● emscripten can’t use dlopen and pthreads together

Implementation:
● A map of component contructors with symbol names

– same as for Android and iOS => solenv/bin/native-code.py
● WASM specific:

– libcomponents with dependencies on all component libraries
– Add libcomponents to all cppuhelper users, as this calls into

the "native code" symbol map table

emscripten: no limit for wasm-opt

● currently "stuck" with Qt supported emscripten 1.39.8
● em++ doesn't support -Wl,-O1

– wasm-opt runs for minutes per binary
– wasm-opt uses threads for all cores

Implementation:
● All binary linking is serialized
● em++.py patched to forward -Wl,-Ox

● Link time is still much too long
● No nested main loops / blocking the browser

– You can run the main loop in a web worker
● Building a virtual FS image to access data
● Debugging seems to be a pain

● Recommended + more problems: “AutoCAD & WebAssembly:
Moving a 30 Year Code Base to the Web”

– https://www.infoq.com/presentations/autocad-webassembly/

Some problems still to tackle

https://www.infoq.com/presentations/autocad-webassembly/

Small Demo

Build setup

● from scratch:
– start from here - README.wasm
– setup emscripten (around 1GB), qt5 (only for the demo, and needs around 10GB)
– setup LibreOffice cross build (strongly recommended to take the configure line from

the README currently)
– this is bleeding edge, please don't expect the branch to build all the time - poke us

(thorsten, jmux on irc: chat.freenode.net on #libreoffice-dev)

● run it (e.g. the demo): $ emrun --serve_after_close
workdir/LinkTarget/Executable/wasm-qt5-mandelbrot.html

● further info - the excellent MDN article:
https://developer.mozilla.org/en-US/docs/WebAssembly

https://git.libreoffice.org/core/+/refs/heads/feature/wasm/README.wasm
irc://chat.freenode.net/#libreoffice-dev
https://developer.mozilla.org/en-US/docs/WebAssembly

Debugging

● build with --enable-dbgutil
● best experience currently: Chrom{e|ium}

Project plan & timeline

● hope to have vcldemo running “real soon now”
● cut LibreOffice down to minimal Writer, port the largest 3rd

party libs (icu, nss) to browser APIs
● either use Qt5, or WSD to render Writer on a HTML5

canvas interactively (by summer 2021)
● get a demo End2End encrypted editing session going by

autumn 2021

Q & A and credits

Thx a lot to NLnet & allotropia for sponsoring!

www.allotropia.de/www.allotropia.de/

https://www.allotropia.de/
https://www.allotropia.de/

