LibreOffice WASM - the How and Why

A status report from the journey to get LibreOffice into the
browser, fully*

WASM & other neat hacks to make
that Happen

FOSDEM virtual conference, 2021-02-07

Jan-Marek Glogowski - glogow@fbihome.de

Thorsten Behrens — thb@libreoffice.org

mailto:glogow@fbihome.de
mailto:thb@libreoffice.org

The State of the Art

Currently (LOOL/COOL):
* HTML5-canvas based browser version
* lightweight, tiled rendering
* the heavy lifting happens on the server
« all documents of all users loaded there
« all rendering & editing happens in the data center
* Pros:
- light on the client
- documents stay on-premise
- ~easy collaborative editing — just one document instance to keep up-to-date
* Cons:
- no offline mode
- expensive to host
— no peer2peer editing, or end2end encryption possible

- o

Pain points of LOOL'’s architecture

* price of hosting
e cost of operations - not trivial to host & scale

* noticeable costs per user, if you want to run it planetary-
scale

e code & technology - two separate repos, but cross-cutting
changes often required

So what to do?

|dea: LibreOffice WebAssembly - lets call it LWA henceforth!
* looking at the trajectories of hardware (mobile/laptop)

— your phone: CPUs with 8 core, up to 2GHz; 12GB RAM on the high-end

- Ultrabooks with 32GB and 12-thread i7... — port the core to a new
architecture! the new platform is ... the browser! i.e. WASM — compile
native code to run in your browser; W3C standard since end of 2019 —

use a WASM core - LibreOffice cross-compiles to WASM (like we do for
Android, i10S, Windows ARM etc)

- use platform APIs whereever feasible (crypto, 10, network) for speed &
weight reasons

Architecture & battle plan

* but, we tried that — it didn’t work?!

* Wwe gave up, as in 2015 emscripten/WASM couldn’t even do exceptions
properly

 stars are aligned now - WASM is W3C standard, with wide browser support
— nothing missing really anymore (except perhaps threading)
- SharedArrayBuffer currently disabled due to Spectre (but hey..)

* What needs doing? low-level cross building port big blobs to use browser
APIs (NSS, | look at you!)

 strip down the monolith (target only Writer for a start)

The technical challenges

And the evolving landscape

2GB limits - size of the binary likely not feasible to load 100MB of WASM & survive
32bit address space

browser disabled SharedArrayBuffer after Spectre exploits

WASM thread support still being cooked: https://github.com/WebAssembly/threads
default-off in browsers, but can be turned on

https://github.com/emscripten-core/emscripten/wiki/Pthreads-with-WebAssembly

so - for the moment, use WebWorkers/ServiceWorkers and message passing, if you
need multithreading...

then again, Writer is single-threaded since 1990

https://github.com/WebAssembly/threads
https://github.com/emscripten-core/emscripten/wiki/Pthreads-with-WebAssembly

Hacking tools & resources

e https://anonyco.github.io/WasmFiddlePlusPlus/ for playgrounds

 or this one: https://mbebenita.github.io/WasmExplorer/ &
https://webassembly.studio/

* https://webassembly.studio/

* https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_Ja
vaScript_API

 some debugging support in FireFox:
https://www.youtube.com/watch?v=R1WtBkMeGds

* best experience so far in Chromium:
https://developers.google.com/web/updates/2020/12/webassembly

https://anonyco.github.io/WasmFiddlePlusPlus/
https://mbebenita.github.io/WasmExplorer/
https://webassembly.studio/
https://webassembly.studio/
https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_API
https://developer.mozilla.org/en-US/docs/WebAssembly/Using_the_JavaScript_API
https://www.youtube.com/watch?v=R1WtBkMeGds
https://developers.google.com/web/updates/2020/12/webassembly

Current WASM status

https://wiki.documentfoundation.org/Development/WASM

- boils down to: feature/wasm + README.wasm
 emsdk and gt5 WASM is integrated with gbuild

static dependency resolver (solenv/gbuild/statics.mk)

few binaries (vcldemo, ui-ppreviewer) are build, so are
some cppunit tests

“Everything” builds but nothing runs yet, except for. wasm-
gt5-mandelbrot (demo)

-

https://wiki.documentfoundation.org/Development/WASM

Major emscripten, gbuild and LO
problems

Looking into major problems

gbuild: linking static executables

LO: code dependency loops

LO: static UNO components
emscripten: no CPU limit for wasm-opt

some problems still to tackle
(+ all the still unknown stuff)

gbuild: linking static executables

* All link info private to the gbuild link targets
 No transitive information available

* Android and IOS: bin/lo-all-static-libs
— Just one binary; collect and throw everything to the linker
Implementation:

* Register all dependencies per linktarget in variables

* traverse the dependency tree to fill all libraries, externals
and statics

e cache them, so "make <module>" will still work
-

LO: code dependency loops

* Normally loops are broken up by using dlopen

— SC <=> scul, sw <=> swul, vcl <=> vclplug_* + filters/gie, sal
<=> sal_textenc

Implementation: loader + plugin concept
* plugins register with a loader library
e executables must link to plugins, if they link to loaders

— needs a dynamic dependency, just if the loader library
dependency exists in the tree

- done while traversing the dependency tree for static execs

LO: static UNO components

* dlopen'ed and instanciated dynamically
* emscripten can’t use dlopen and pthreads together
Implementation:

* A map of component contructors with symbol names
- same as for Android and 10S => solenv/bin/native-code.py
* WASM specific:
- libcomponents with dependencies on all component libraries

- Add libcomponents to all cppuhelper users, as this calls into
the "native code" symbol map table

emscripten: no limit for wasm-opt

e currently "stuck" with Qt supported emscripten 1.39.8

* em++ doesn't support -W|,-O1

— wasm-opt runs for minutes per binary
— wasm-opt uses threads for all cores

Implementation:
* All binary linking is serialized
* em++.py patched to forward -WI,-Ox

Some problems still to tackle

* Link time is still much too long

* No nested main loops / blocking the browser
— You can run the main loop in a web worker
* Building a virtual FS image to access data

 Debugging seems to be a pain

* Recommended + more problems: “AutoCAD & WebAssembly:
Moving a 30 Year Code Base to the Web”

- https://www.infog.com/presentations/autocad-webassembly/

https://www.infoq.com/presentations/autocad-webassembly/

Small Demo '

Build setup

 from scratch:

start from here - README.wasm
setup emscripten (around 1GB), gt5 (only for the demo, and needs around 10GB)

setup LibreOffice cross build (strongly recommended to take the configure line from
the README currently)

this is bleeding edge, please don't expect the branch to build all the time - poke us
(thorsten, jmux on irc: chat.freenode.net on #libreoffice-dev)

 runit(e.g. the demo): $ emrun --serve_after_close
workdir/LinkTarget/Executable/wasm-gt5-mandelbrot.html

 further info - the excellent MDN article:
https://developer.mozilla.org/en-US/docs/WebAssembly

https://git.libreoffice.org/core/+/refs/heads/feature/wasm/README.wasm
irc://chat.freenode.net/#libreoffice-dev
https://developer.mozilla.org/en-US/docs/WebAssembly

Debugging

&= dl Elements Console Sources Metwork Performance Memory Application Securi Lightheusa
= = . Page Filesystem » sm-qtS-mandelbrot html mandelbrotwidget.cxe x % i, o
* pulld with —— ble-dbgutil ——— :
e n a e gu l * O top #include <math.h= “ O Paused
localhost6931
(e double DefaultCenterX = -0.637811; v Threads
B . i wasm-qis-mandelbrot himi double DefaultCenter = -8,.8395159; * Main
® o qtioaderjs double DefaultScale = 0.08403897;
€St experience curren romyejium et
Ll wasm-gt5-mandelbrot. wasm double ZoomInFactor = 0.8; wasmal
L double ZoomDutFactor = 1 / ZoomInFactor; ‘
i gtiogo.svg int ScrollStep = 20;: wasmal
» O filesy H]
o 7 MandelbrotWidget::MandelbrotWidget (QWidget*® parent) wasm-qt!
¥ ¢ wasm-qtS-mandelbrot. workerjs 4 QWidget{parent) q
v (O filessf . centerX{DefaultCenterX) » Watch
= » centerY({DefaultCenterY)
v I buid . pixmapScale(DefaultScale) v Call Stack
» g src » cursScale(DefaultScale) * Mandelbd
v I tdf/libo-wasm 7 connect(&thread, &RenderThread::renderedImage, this, &M |
» [wasm/source/gt5s-mandelt Qwidget
76 setWindowTitle(tr(“Handelbrot™));
main.coc #1f OT_CONFIG{cursor)
mandelbrotwidget cor 78 setCursor{Qt::CrossCursor); QApplica
. fendif
mandelbrotwidget.h] resize(550, 400);
1 Qapplical
rendevthread, cxx
» B workdir/CustomTarget/wa: void MandelbrotWidget: :paintEvent(QPaintEvent® /* event */) QCoreAp)
E Cylocioet o] QPainter PAANLER(this):
» ¢ff wasm-gt5-mandelbrotworkerjs painter.fillRectirect(], Ot::black); Qeoresp
L ff wasm-qts-mandelbrot worker js 88 if (pixmap.isNull())
v off wasm-qts-mandelbrotwarker js i Qwidgets
painter.setPen(Qt::white);
painter.drawText(rect(), Ot lignCenter, tr("Re
return; QWidget
}
a5 it (gFuzzylompare(curScale, pixmapScale)) OWidget
i
painter.drawPixmap({pixmap0ffset, pixmap);
QWidget§
else
auto previewPixmap = qFuzzyCompare(pixsap.devicePix QWidget
? pixmap
: pixmap.scaled(pixmap,siz "
Ot: :KeepAs QApplica
double scaleFactor = piwxmapScale / curScale;
int newWidth = int(previewPixmap . width{) * scaleFac . QApplica
. EEN o A oy Fe N S I TR
% + 1} Line85, Column 14 (source mapped from S-mandelbrot wasm) Cov QCoreAp)
¢ Console Issues
io] top v @ Default levels =
»

Project plan & timeline

* hope to have vcldemo running “real soon now”

 cut LibreOffice down to minimal Writer, port the largest 3™
party libs (icu, nss) to browser APIs

e either use Qt5, or WSD to render Writer on a HTML5
canvas interactively (by summer 2021)

e get a demo End2End encrypted editing session going by
autumn 2021

Q & A and credits

Thx a lot to NLnet & allotropia for sponsoring!

G%anlnet @ allotropia

EEEEEEEEEE

https://www.allotropia.de/
https://www.allotropia.de/

