
Monitoring MariaDB Server with 
bpftrace on Linux
Problems and Solutions

Valerii Kravchuk, Principal Support Engineer, MariaDB
valerii.kravchuk@mariadb.com

1



www.percona.com

Who am I and What Do I Do?
Valerii (aka Valeriy) Kravchuk:
● MySQL Support Engineer in MySQL AB, Sun and Oracle, 2005-2012
● Principal Support Engineer in Percona, 2012-2016
● Principal Support Engineer in MariaDB Corporation since March 2016
● http://mysqlentomologist.blogspot.com - my blog about MariaDB and 

MySQL (including some HowTos, not only bugs marketing)
● https://www.facebook.com/valerii.kravchuk - my Facebook page
● @mysqlbugs #bugoftheday
● MySQL Community Contributor of the Year 2019
● I speak about MySQL and MariaDB in public. Some slides from previous talks 

are  here and there…
● “I solve problems”, “I drink and I know things”

2

http://mysqlentomologist.blogspot.com
http://mysqlentomologist.blogspot.com/search/label/howto
https://www.facebook.com/valerii.kravchuk
https://twitter.com/mysqlbugs
https://www.percona.com/blog/2019/05/29/mysql-community-awards-at-percona-live-2019/
https://www.slideshare.net/valeriikravchuk1
https://www.slideshare.net/ValeriyKravchuk
http://mysqlentomologist.blogspot.com/2016/01/im-winston-wolf-i-solve-problems.html
https://youtu.be/GYh7smM6YpM


www.percona.com

Disclaimers
● Since September, 2012 I am an Independent Consultant 

providing services to different companies
● All views, ideas, conclusions, statements and approaches 

in my presentations and blog posts are mine and may not 
be shared by any of my previous, current and future 
employees, customers and partners

● All examples are either based on public information or are 
truly fictional and has nothing to do with any real persons or 
companies. Any similarities are pure coincidence :)

● The information presented is true to the best of my 
knowledge

3



www.percona.com

Sources of tracing and profiling info for MariaDB

● Trace files from -debug binaries
● Extended slow query log
● show [global] status, show engine innodb status\G
● InnoDB-related tables in the INFORMATION_SCHEMA
● userstat - operations per user, client, table or index
● show profiles;
● PERFORMANCE_SCHEMA (MariaDB 10.5 added 

memory instrumentation and some more)
● OS-level tracing and profiling tools:

○ /proc sampling
○ ftrace and perf profiler
○ eBPF, bcc tools and bpftrace

● tcpdump analysis
4

https://www.percona.com/doc/percona-server/LATEST/diagnostics/slow_extended.html
https://mariadb.com/kb/en/library/information-schema-innodb-tables/
https://mariadb.com/kb/en/user-statistics/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-105/#performance-schema-updates-to-match-mysql-57-instrumentation-and-tables
https://mariadb.com/kb/en/changes-improvements-in-mariadb-105/#performance-schema-updates-to-match-mysql-57-instrumentation-and-tables
https://vividcortex.com/blog/2014/02/25/performance-schema-slowquery-log-tcp-sniffing/


www.percona.com

What is this session about?

● It’s about tracing and profiling MariaDB server in 
production on recent Linux versions with eBPF-based 
bpftrace tool

● I plan to present and discuss some (mostly resolvable) 
dynamic tracing problems one may hit with MariaDB server

● Performance impact of tracing and profiling in production 
matters

● Why not about Performance Schema?
● Why not about perf and bcc tools?

5

https://en.wikipedia.org/wiki/Tracing_(software)
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://github.com/iovisor/bpftrace
https://www.slideshare.net/ValeriyKravchuk/applying-profilers-to-my-sql-fosdem-2017
https://mariadb.com/kb/en/performance-schema-overview/


www.percona.com

So, what do I suggest?
● Use modern Linux tracing tools while troubleshooting MariaDB server!
● Yes, all that kernel and user probes and tracepoints, with bpftrace if Linux 

kernel version allows to use it
● Brendan D. Gregg explained the role of bpftrace in the global picture:

6

http://www.brendangregg.com/


www.percona.com

Tracing events sources
● So, tracing is basically doing something whenever specific events occur
● Event data can come from the kernel or from userspace (apps and libraries). 

Some of them are automatically available without further upstream 
developer effort, others require manual annotations:

● Kprobe - the mechanism that allows tracing any function call inside the 
kernel

● Kernel tracepoint - tracing custom events that the kernel developers have 
defined (with TRACE_EVENT macros).

● Uprobe - for tracing user space function calls
● USDT (e.g. DTrace probes) stands for Userland Statically Defined Tracing

7

Automatic Manual annotations

Kernel kprobes Kernel tracepoints

Userspace uprobes USDT



www.percona.com

eBPF: extended Berkeley Packet Filter
● eBPF is a tiny language for a VM that can be executed inside Linux Kernel. eBPF instructions can 

be JIT-compiled into a native code. eBPF was originally conceived to power tools like tcpdump 
and implement programmable network packed dispatch and tracing. Since Linux 4.1, eBPF 
programs can be attached to kprobes and later - uprobes, enabling efficient programmable tracing

● Brendan Gregg explained it here:

8

https://lwn.net/Articles/740157/
http://www.brendangregg.com/ebpf.html


www.percona.com

More about eBPF
● Julia Evans explained it here:

1. You write an “eBPF program” (often in C, Python or use a tool that generates that program 
for you) for LLVM. It’s the “probe”.

2. You ask the kernel to attach that probe to a kprobe/uprobe/tracepoint/dtrace probe
3. Your program writes out data to an eBPF map / ftrace / perf buffer
4. You have your precious preprocessed data exported to userspace!

● eBPF is a part of any modern Linux (kernel 4.9+):
4.1 - kprobes
4.3 - uprobes
4.6 - stack traces, count and hist builtins (use PER CPU maps for accuracy and efficiency)
4.7 - tracepoints
4.9 - timers/profiling

● You don’t have to install any kernel modules
● You can define your own programs to do any fancy aggregation you want, so 

it’s really powerful
● DBAs usually use eBPF via some existing bcc frontend. Check some here.
● Recently a very convenient bpftrace frontend was added

9

https://jvns.ca/blog/2017/07/05/linux-tracing-systems/#ebpf
https://ebpf.io/
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#1-builtins-2
https://github.com/iovisor/bcc
http://mysqlentomologist.blogspot.com/2020/09/bcc-tools-for-disk-io-analysis-and-more.html


bpftrace as a frontend for eBPF
● bpftrace (frontend with programming language) allows to define actions for 

probes presented below in easy and flexible way
● How to start using bpftrace? You need recent enough kernel 5.x.y, install 

the package or build it from GitHub source and then...

10

https://github.com/iovisor/bpftrace
https://www.mankier.com/8/bpftrace
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
http://mysqlentomologist.blogspot.com/2019/10/dynamic-tracing-of-mariadb-server-with.html


Study at least one-liner bpftrace examples

● https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.
md

● Command line options
-l | -e ‘program’ | -p PID | -c CMD | --unsafe | -d | -dd | -v | ...

● Listing probes that match a template:
bpftrace -l 'tracepoint:syscalls:sys_enter_*'

● Tracing file opens may look as follows:
# bpftrace -e 'tracepoint:syscalls:sys_enter_openat \
{ printf("%s %s\n", comm, str(args->filename)); }'

● The program consists of one or more of the following sequences:
probe[,probe,...] [/filter/] { action }

● For me the language resembles awk (see the Reference Guide)
● More from Brendan Gregg (as of August 2019) on it is here
● “Bpftrace is wonderful! Bpftrace is the future!”

11

https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.md
https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.md
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
https://opensource.com/article/19/8/introduction-bpftrace
https://www.joyfulbikeshedding.com/blog/2019-01-31-full-system-dynamic-tracing-on-linux-using-ebpf-and-bpftrace.html#what-trace-points-are-available-what-should-i-trace


Check and use existing bpftrace programs

● They are in the tools subdirectory:

[root@fc31 tools]# ls
bashreadline.bt         loads_example.txt  syscount_example.txt
bashreadline_example.txt mdflush.bt         tcpaccept.bt
biolatency.bt           mdflush_example.txt tcpaccept_example.txt
biolatency_example.txt  naptime.bt         tcpconnect.bt
biosnoop.bt             naptime_example.txt tcpconnect_example.txt
biosnoop_example.txt    oomkill.bt         tcpdrop.bt
biostacks.bt            oomkill_example.txt tcpdrop_example.txt
biostacks_example.txt   opensnoop.bt       tcplife.bt
bitesize.bt             opensnoop_example.txt  tcplife_example.txt
bitesize_example.txt    pidpersec.bt       tcpretrans.bt
capable.bt              pidpersec_example.txt  tcpretrans_example.txt
capable_example.txt     runqlat.bt         tcpsynbl.bt
…

● Ready to use for ad hoc OS level tracing and monitoring
● Good examples on how to use kprobes and tracepoints, clean up everything, 

use hist() and other built in functions
● See my blog post for a lot more details

12

https://github.com/iovisor/bpftrace/tree/master/tools
https://mysqlentomologist.blogspot.com/2021/01/playing-with-recent-bpftrace-and_24.html


www.percona.com

Adding a uprobe to MariaDB 10.5 with bpftrace
● The idea is to add dynamic probes to capture SQL queries (and their 

execution times)
● This was done on Fedora 31, see my blog post for the details
● First I had to find out with gdb or code where is the query stored/passed
● I already know that it is in the third argument in this call:

dispatch_command(enum_server_command, THD*, char*, ...)

● Then it’s just as easy as follows (note the mangled function name):

[openxs@fc31 ~]$ sudo bpftrace -e ' 
uprobe:/home/openxs/dbs/maria10.5/bin/mariadbd:_Z16dispatch_com
mand19enum_server_commandP3THDPcjbb { @sql[tid] = str(arg2); 
@start[tid] = nsecs; }                                                                        
uretprobe:/home/openxs/dbs/maria10.5/bin/mariadbd:_Z16dispatch_
command19enum_server_commandP3THDPcjbb /@start[tid] != 0/ { 
printf("%s : %u %u ms\n", @sql[tid], tid, (nsecs - 
@start[tid])/1000000); } '

 13

https://mysqlentomologist.blogspot.com/2021/01/playing-with-recent-bpftrace-and.html
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#1-builtins


www.percona.com

Adding a uprobe to MariaDB 10.5 with bpftrace
● We have queries captured with probe added on previous slide:

Attaching 2 probes...
select sleep(1) : 4029 1000 ms
 : 4029 0 ms
select sleep(2) : 4281 2000 ms
 : 4281 0 ms
select sleep(3) : 4283 3000 ms
 : 4283 0 ms
select sleep(4) : 4282 4000 ms
 : 4282 0 ms
^C
...

● We do not need to find addresses, understand the way parameters are 
passed via CPU registers, and usually can access structure fields etc, but 
studying the source code of the specific version is still essential

● Version 0.11 understands non-mangled C++ function signatures...

14



Getting stack traces with bpftrace

● See ustack() etc in the Reference Guide
● This is how we can use bpftrace as a poor man’s profiler:

sudo bpftrace -e 'profile:hz:99 /comm == "mariadbd"/ 
{printf("# %s\n", ustack(perf));}' > /tmp/ustack.txt

● We get output like this by default (perf argument adds address etc):
...
mysqld_stmt_execute(THD*, char*, unsigned int)+37
dispatch_command(enum_server_command, THD*, char*, 
unsigned int, bool, bool)+5123
do_command(THD*)+368
tp_callback(TP_connection*)+314
worker_main(void*)+160
start_thread+234

● See my recent blog post for more details on what you may want to do next :)

15

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#16-ustack-stack-traces-user
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
http://mysqlentomologist.blogspot.com/2020/01/using-bpftrace-on-fedora-29-more.html


Tracing pthread_mutex_lock with bpftrace

● You can find more details in my recent blog post
● But basically we need to trace pthread_mutex_lock calls in the 

libpthread.so.* and count different strack traces that led to them, then output 
the summary:
[openxs@fc31 ~]$ ldd /home/openxs/dbs/maria10.5/bin/mariadbd | grep thread
    libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f3d957bf000)
[openxs@fc31 ~]$ sudo bpftrace -e 
'uprobe:/lib64/libpthread.so.0:pthread_mutex_lock /comm == "mariadbd"/ { 
@[ustack] = count(); }' > /tmp/bpfmutex.txt
^C

● Take care about the performance impact for tracing frequent events!
...
[ 10s ] thds: 32 tps: 658.05 qps: 13199.78 (r/w/o: 
9246.09/2634.40/1319.30) lat (ms,95%): 227.40 err/s: 0.00 reconn/s: 0.00
[ 20s ] thds: 32 tps: 737.82 qps: 14752.19 (r/w/o: 
10325.44/2951.30/1475.45) lat (ms,95%): 193.38 err/s: 0.00 reconn/s: 0.00
[ 30s ] thds: 32 tps: 451.18 qps: 9023.16 (r/w/o: 6316.56/1804.03/902.57) 
lat (ms,95%): 320.17 err/s: 0.00 reconn/s: 0.00
[ 40s ] thds: 32 tps: 379.09 qps: 7585.24 (r/w/o: 5310.19/1516.87/758.18) 
lat (ms,95%): 390.30 err/s: 0.00 reconn/s: 0.00
...

16

https://mysqlentomologist.blogspot.com/2021/01/playing-with-recent-bpftrace-and.html


Performance impact of pt-pmp vs perf vs bpftrace

● Consider sysbench (I/O bound) test on Q8300 @ 2.50GHz Fedora box:
sysbench /usr/local/share/sysbench/ oltp_point_select.lua  
--mysql-host=127.0.0.1 --mysql-user=root --mysql-port=3306 --threads=12 
--tables=4 --table-size=1000000 --time=60 --report-interval=5 run

● I’ve executed it without tracing and with the following (compatible?) data 
collections working for same 60 seconds:
1. sudo pt-pmp --interval=1 --iterations=60 --pid=`pidof mysqld`

2. sudo perf record -F 99 -a -g -- sleep 60
[ perf record: Woken up 17 times to write data ]
[ perf record: Captured and wrote 5.464 MB perf.data (23260 samples) ]

3. sudo bpftrace -e 'profile:hz:99 { @[ustack] = count(); }' > 
/tmp/bpftrace-stack.txt
[openxs@fc29 tmp]$ ls -l /tmp/bpftrace-stack.txt                           

 
-rw-rw-r--. 1 openxs openxs 2980460 Jan 29 12:24 /tmp/bpftrace-stack.txt

● Average QPS: 27272 | 15279 (56%) | 26780 (98.2%) | 27237 (99.87%)

17



www.percona.com

Problems of dynamic tracing with bpftrace
● root/sudo access is required
● Limit memory and CPU usage while in kernel context
● Do as much aggregations as possible in the probes
● How to add dynamic probe to some line inside the function (doable in perf)?
● C++ (mangled names, class members, virtual member functions) and 

access to complex structures (bpftrace needs headers)
● eBPF tools rely on recent Linux kernels (4.9+). Use perf for older versions!
● -fno-omit-frame-pointer must be used everywhere to see reasonable stack 

traces
● -debuginfo packages, symbolic information for binaries?
● More tools to install (and maybe build from source), but BTF+CO-RE etc 

may help.
● I had not (yet) used bpftrace for real life Support issues at customer side 

(gdb and perf are standard tools for many customers already).

18

http://www.brendangregg.com/blog/2020-11-04/bpf-co-re-btf-libbpf.html


www.percona.com

Am I crazy trying these and suggesting to DBAs?
● Quite possible, maybe I just have too much free time :)
● Or maybe I do not know how to use Performance Schema properly :)
● But I am not alone… Markos Albe also speaks about perf and eBPF/bcc 

tools, Daniel Black writes and speaks about perf....
● Dynamic tracers are proven tools for instrumenting OS calls (probes for 

measuring I/O latency at microsecond precision, for example) 
● Dynamic tracing of RDBMS userspace is a topic of growing interest, with a 

lot of RAM and workloads that are often CPU-bound these days.
● For open source RDBMS like MariaDB there is no good reason NOT to try to 

use dynamic probes (at least while Performance Schema instrumentations 
are not on every other line of the code :)

● eBPF with bpftrace makes it easier (to some extent) and safer to do this in 
production

19

https://www.percona.com/community-blog/2020/02/05/finding-mysql-scaling-problems-using-perf/
https://www.percona.com/community-blog/2020/02/05/finding-mysql-scaling-problems-using-perf/


www.percona.com

Thank you!
Questions and Answers?
Please, search and report bugs at: https://jira.mariadb.org

20

https://jira.mariadb.org

