
Buffer Pool
Performance Improvements 
in the InnoDB Storage 
Engine of MariaDB Server
Marko Mäkelä
Lead Developer InnoDB
MariaDB Corporation



Introduction

Scalability in Databases
● A database management system implements ACID transactions

● Users need concurrent access to the same tables, records, or data pages

○ Transactional locks on records will be held until COMMIT or ROLLBACK .

● MVCC reads are non-locking but still involve latches

○ Mini-transactions (atomic modifications of multiple pages) hold page latches

○ Buffer pool (requesting, reading, flushing, evicting pages), redo log writes, …



A Layered Implementation of Transactions

Concepts

● Transport: TCP/IP

● Network: IP, ICMP, UDP, BGP, DNS, 
… (router/switch)

● Data link: Packet framing, checksums

● Physical: Ethernet (CSMA/CD), 
WLAN (CSMA/CA), …

Low Layers in the OSI Model
● Transaction: ACID, MVCC

● Mini-transaction (+buffer pool): 
Atomic, Durable writes (+recovery)

● File system (+cache): ext4, XFS, 
ZFS, NTFS, NFS, …

● Storage: HDD, SSD, PMEM, …

A Storage Engine in a DBMS

https://en.wikipedia.org/wiki/OSI_model


Constraints

Write Dependencies and ACID
● A log sequence number (LSN) totally orders the output of mini-transactions.

○ An atomic change to pages is durable if all log up to the end LSN has been written.

● Undo log pages implement ACID transactions (implicit locks, rollback, MVCC)

● Write-ahead logging: The FIL_PAGE_LSN of a changed page must be durable

● Log checkpoint: write all changed pages older than the checkpoint LSN

● Recovery will have to process log from the checkpoint LSN to last durable LSN



Mini-Transactions and Recovery

Atomic Mini-Transactions: Latches and Log
Mini-Transaction

Memo:
Locks or 
Buffer-Fixes

dict_index_t::lock 
covers non-leaf pages

Log:
Page Changes

Data Files
FIL_PAGE_LSNFlush (after log)

ib_logfile0Log Buffer
log_sys.buf Write ahead (of page flush) to log

commit

A mini-transaction commit stores 
the log position (LSN) to each 
changed page.

Recovery will apply log if its LSN 
is newer than the 
FIL_PAGE_LSN.

Log position (LSN) Flush list
Buffer pool page
buf_page_t::
oldest_modification

fil_space_t::latch
covers page allocation



MariaDB Server 10.5

MariaDB 10.5 Avoids Unnecessary Writes
● Freed pages will be discarded: Useful in massive DROP (or rebuild) operations

● Doublewrite buffer will be skipped for newly (re)initialized pages

○ Crash recovery will avoid reading pages that are fully initialized by redo log.

● Change buffer merge is only executed on demand, not in the background

● TEMPORARY TABLE pages will only be written on LRU eviction (since 10.5.9)

● innodb_flush_neighbors is ignored on SSD (since 10.4)



Tackling the Root 
Causes of 
Bottlenecks

MariaDB Server 10.5



MariaDB Server 10.5

Some Changes to the InnoDB Buffer Pool
● In 2006, MySQL 5.0.30 introduced buf_block_t::mutex to reduce some 

contention on buf_pool->mutex

● In 2010, MySQL 5.5.7 partitioned the buffer pool by hash on page identifier

● MySQL 5.6: multiple page cleaner threads (complicated further in MySQL 5.7)

● In 2020, MariaDB Server 10.5 reverted to a single buf_pool and page cleaner

○ November 2020: MariaDB Server 10.5.7 reduced latency in the page cleaner



MariaDB Server 10.5

Low-Level Contention is Expensive
● The contention of buf_pool.mutex was reduced by the following:

○ The access rules for buf_pool.page_hash were simplified, and a std::atomic 
based cache-friendly rw-lock is now interleaved with the hash array.

○ The buf_block_t::mutex was eliminated, thanks to more use of std::atomic.

○ Code refactoring removed unnecessary pairs of mutex unlock/lock operations.

● MariaDB 10.5 seems to scale to thousands of concurrent connections

○ The work-around innodb_thread_concurrency was removed.



MariaDB Server 10.5

Partition mutexes, not the data structures
● MySQL 5.5 split not only buf_pool->mutex but the entire buf_pool

● MySQL 5.6: multiple page cleaner threads (complicated further in MySQL 5.7)

● Einstein: “Make things as simple as possible, but not any simpler”

○ Can we actually achieve scalability with a single buf_pool.mutex? Yes!

○ A regression was observed for some cases of write-heavy workloads.

○ Page flushing was not as simple as possible!



Asynchronous Writes

Removing Bottlenecks in Page Writes
● The fil_system.mutex was acquired several times per page write

○ Use a single std::atomic field in fil_space_t for reference-counting and flags

● The synchronous writes of the doublewrite buffer conflicted with fsync()

○ 10.5.7 initiates a single asynchronous write for 128 pages (while filling another 
128-page buffer); on write completion initiates writes for the data pages

● Thanks to Microsoft tools and Linux sudo perf record -t〈page cleaner〉



An Overview of buf_pool Data Structures

Concepts

page_hash

rw_lock

hash(id1)

hash(id2)

hash(id3)

rw_lock

hash(id4)

hash(id5)

LRU

flush_list dirty persistent pages; ordered by oldest LSN

all pages, including those of temporary tables

Page A Page B Page C Page D

The order of each list depends on the workload. 
If Page A is modified, Page B becomes LRU 
(and then, it would be first in both lists!)



Eviction Flushing

What is Eviction Flushing (LRU Flushing)?
● If the buffer pool is full and a page is going to be read or created, something 

must be thrown out (evicted) to free up storage space

○ buf_pool.LRU keeps track of all pages, following least-recently-used policy

● If none of the 100 least-recently-used pages are clean, flushing kicks in

○ MDEV-23399 (MariaDB Server 10.5.7) removed “single-page flushing”, and instead 
makes the user thread initiate an asynchronous eviction flushing batch.

○ Write completion callbacks will instantly free the buffer block for future use.

https://jira.mariadb.org/browse/MDEV-23399


Checkpoint Flushing

What is Checkpoint Flushing?
● The checkpoint LSN defines the logical point of time for starting recovery

● The logical end of the circular ib_logfile0 must never overwrite the start!

● The start is logically discarded by advancing the checkpoint LSN

○ Checkpoint LSN must not be ahead of MIN(oldest_modification) in buf_pool

● Use innodb_log_file_size ≫ innodb_buffer_pool_size to optimize

○ Recovery in MariaDB Server 10.5 is faster and will not run out of memory.



Checkpoint Flushing

Simplifying the Page Cleaner
● The page cleaner threads had multiple modes and coordination with each other

● With LRU flushing moved to user threads, and with a “recovery coordinator” 
thread removed, we dedicate the page cleaner to checkpoint flushing activity

○ Log checkpoints are cheapest to initiate at the end of page write batch completion!

○ Each batch skips locked or “too new” pages.

○ At the start of each batch, a concurrent log write is initiated to ensure progress.

○ Use normal mutexes and condition variables for inter-thread communication.



Checkpoint Flushing

Lower-Latency Emergency Flushing in 10.5.7
● Cause of performance stalls: Ensuring that the log will not overwrite itself

○ The page cleaner tries to advance the checkpoint after every 
innodb_io_capacity pages, reducing the wait time in the user threads.

○ Common workaround: SET GLOBAL innodb_dirty_pages_pct_lwm=10;

● A new buf_flush_ahead() interface was added to give “early warning” to the 
page cleaner thread, initiating the “furious flushing” mode earlier

○ mtr_t::commit() may initiate it, avoiding a wait in a future log_free_check()



Future Work

Future Improvements
● MariaDB 10.6 replaces buf_block_t::lock and the old homebrew 

rw_lock_t with a leaner implementation

● MariaDB 10.6 also replaces homebrew mutexes and events with normal 
mutexes and condition variables

○ The only remaining case of the homebrew spin-loop seems to be working around 
contention on lock_sys.mutex, which will be tackled separately.

● Upcoming changes to file formats will enable even more improvements



MariaDB Corporation

Concurrency is Hard, Performance is Harder
● Testing is overwhelmed by a combinatorial explosion of parameters

● The performance of a database server depends on many factors

○ Bad configuration parameters; sometimes poorly documented: 
innodb_max_dirty_pages_pct_lwm=0 (MDEV-24537)

○ Particular hardware, firmware, operating system or file system version

● Performance testing introduces one more factor: time to reach steady state

https://jira.mariadb.org/browse/MDEV-24537

