SN
\ 3
Y N
AN [
AN
BN
!
\‘.

A\

in the InnoDB Storage @

Engine of MariaDB Server

..
\

"
Wi
R\

N\
)

Marko Makela WAAY, A it
Lead Developer InnoDB | S\
MariaDB Corporation

Scalability in Databases

e A database management system implements ACID transactions

e Users need concurrent access to the same tables, records, or data pages
o Transactional locks on records will be held until COMMIT or ROLLBACK.

e MVCC reads are non-locking but still involve latches

o Mini-transactions (atomic modifications of multiple pages) hold page latches

o Buffer pool (requesting, reading, flushing, evicting pages), redo log writes, ...

Introduction JMuriqDB

A Layered Implementation of Transactions

Low Layers in the OSI Model A Storage Engine in a DBMS
e Transport: TCP/IP e Transaction: ACID, MVCC

e Network: IP, ICMP, UDP, BGP, DNS, e Mini-transaction (+buffer pool):
... (router/switch) Atomic, Durable writes (+recovery)

e Data link: Packet framing, checksums e File system (+cache): ext4, XFS,

ZFS, NTFS, NFS, ...
e Physical: Ethernet (CSMA/CD),

WLAN (CSMA/CA), ... e Storage: HDD, SSD, PMEM, ...

Concepts ,‘I MariaDB

https://en.wikipedia.org/wiki/OSI_model

Write Dependencies and ACID

e Alog sequence number (LSN) totally orders the output of mini-transactions.

o An atomic change to pages is durable if all log up to the end LSN has been written.
e Undo log pages implement ACID transactions (implicit locks, rollback, MVCC)
e \Write-ahead logging: The FIL_PAGE_LSN of a changed page must be durable
e Log checkpoint: write all changed pages older than the checkpoint LSN

e Recovery will have to process log from the checkpoint LSN to last durable LSN

Constraints JMuriaDB

Atomic Mini-Transactions: Latches and Log

Mini-Transaction dict_index_t::lock | A mini-transaction commit stores

4 \/’ covers non-leaf pages | the log position (LSN) to each
M,ﬁg f,’r: changed page.
Buffer-Fixes ~_ — | fil_space_t::latch

covers page allocation | Recovery will apply log if its LSN
is newer than the
FIL_PAGE_LSN.

Log:
Page Changes

-
K.

commit Buffer pool page
h buf_pagg_t: :p . Flush list

Flush (after log)

Log Buffer / —
LEEDSILOEE \Write ahead (of page flush).tolog

Mini-Transactions and Recovery JMuriaDB

Log position (LSN)

MariaDB 10.5 Avoids Unnecessary Writes

Freed pages will be discarded: Useful in massive DROP (or rebuild) operations
Doublewrite buffer will be skipped for newly (re)initialized pages

o Crash recovery will avoid reading pages that are fully initialized by redo log.
Change buffer merge is only executed on demand, not in the background
TEMPORARY TABLE pages will only be written on LRU eviction (since 10.5.9)

innodb_flush_neighbors is ignored on SSD (since 10.4)

MariaDB Server 10.5 JMuriQDB

Tackling the Ro
Causes of
Bottlenecks

MariaDB Server 10.5

-

Some Changes to the InnoDB Buffer Pool

e In 2006, MySQL 5.0.30 introduced buf_block_t: :mutex to reduce some
contention on buf_pool->mutex

e 1In 2010, MySQL 5.5.7 partitioned the buffer pool by hash on page identifier
e MySQL 5.6: multiple page cleaner threads (complicated further in MySQL 5.7)

e In 2020, MariaDB Server 10.5 reverted to a single buf_pool and page cleaner

o November 2020: MariaDB Server 10.5.7 reduced latency in the page cleaner

MariaDB Server 10.5 JMuriQDB

Low-Level Contention is Expensive

e The contention of buf_pool.mutex was reduced by the following:

o The access rules for buf_pool.page_hash were simplified, and a std: :atomic
based cache-friendly rw-lock is now interleaved with the hash array.

o The buf_block_t: :mutex was eliminated, thanks to more use of std: :atomic.
o Code refactoring removed unnecessary pairs of mutex unlock/lock operations.
e MariaDB 10.5 seems to scale to thousands of concurrent connections

o The work-around innodb_thread_concurrency was removed.

MariaDB Server 10.5 JMuriQDB

Partition mutexes, not the data structures

e MySQL 5.5 split not only buf_pool->mutex but the entire buf_pool
e MySQL 5.6: multiple page cleaner threads (complicated further in MySQL 5.7)

e Einstein: “Make things as simple as possible, but not any simpler”
o Can we actually achieve scalability with a single buf pool.mutex? Yes!
o Aregression was observed for some cases of write-heavy workloads.

o Page flushing was not as simple as possible!

MariaDB Server 10.5 JMuriQDB

Removing Bottlenecks in Page Writes

e The fil_system.mutex was acquired several times per page write
o Useasingle std: :atomic field in fil_space_t for reference-counting and flags
e The synchronous writes of the doublewrite buffer conflicted with fsync()

o 10.5.7 initiates a single asynchronous write for 128 pages (while filling another
128-page buffer); on write completion initiates writes for the data pages

e Thanks to Microsoft tools and Linux sudo perf record -t{page cleaner)

Asynchronous Writes J MariaDB

An Overview of buf_pool Data Structures

page_hash

flush_list

rw_Jlock

hash(id,)

hash(id,)

hash(id,) —

LRU

rw_lock

Page A

hash(id,)

hash(id;) —

Concepts

dirty persistent pages; ordered by oldest LSN

all pages, including those of temporary tables

Page B Page C

N~

Page D

The order of each list depends on the workload.
If Page A is modified, Page B becomes LRU
(and then, it would be first in both lists!)

J MariaDB

What is Eviction Flushing (LRU Flushing)?

e If the buffer pool is full and a page is going to be read or created, something
must be thrown out (evicted) to free up storage space

o buf_pool.LRU keeps track of all pages, following least-recently-used policy
e If none of the 100 least-recently-used pages are clean, flushing kicks in

o MDEV-23399 (MariaDB Server 10.5.7) removed “single-page flushing”, and instead
makes the user thread initiate an asynchronous eviction flushing batch.

o Write completion callbacks will instantly free the buffer block for future use.

Eviction Flushing JMuriqDB

https://jira.mariadb.org/browse/MDEV-23399

What is Checkpoint Flushing?

The checkpoint LSN defines the logical point of time for starting recovery
The logical end of the circular ib_logfile® must never overwrite the start!
The start is logically discarded by advancing the checkpoint LSN

o Checkpoint LSN must not be ahead of MIN(oldest_modification) in buf_pool
Use innodb_log_file_size » innodb_buffer_pool_size to optimize

o Recovery in MariaDB Server 10.5 is faster and will not run out of memory.

Checkpoint Flushing JMuriqDB

Simplifying the Page Cleaner
e The page cleaner threads had multiple modes and coordination with each other

e With LRU flushing moved to user threads, and with a “recovery coordinator”
thread removed, we dedicate the page cleaner to checkpoint flushing activity

o Log checkpoints are cheapest to initiate at the end of page write batch completion!
o Each batch skips locked or “too new” pages.
o At the start of each batch, a concurrent log write is initiated to ensure progress.

o Use normal mutexes and condition variables for inter-thread communication.

Checkpoint Flushing JMuriqDB

Lower-Latency Emergency Flushing in 10.5.7

e Cause of performance stalls: Ensuring that the log will not overwrite itself

o The page cleaner tries to advance the checkpoint after every
innodb_io_capacity pages, reducing the wait time in the user threads.

o Common workaround: SET GLOBAL innodb_dirty_pages_pct_lwm=10;

e Anew buf_flush_ahead() interface was added to give “early warning” to the
page cleaner thread, initiating the “furious flushing” mode earlier

o mtr_t::commit() may initiate it, avoiding a wait in a future log_free_check()

Checkpoint Flushing JMuriqDB

Future Improvements

e MariaDB 10.6 replaces buf_block_t: :1lock and the old homebrew
rw_lock_t with a leaner implementation

e MariaDB 10.6 also replaces homebrew mutexes and events with normal
mutexes and condition variables

o The only remaining case of the homebrew spin-loop seems to be working around
contention on lock_sys.mutex, which will be tackled separately.

e Upcoming changes to file formats will enable even more improvements

Future Work JMuriqDB

Concurrency is Hard, Performance is Harder

e Testing is overwhelmed by a combinatorial explosion of parameters

e The performance of a database server depends on many factors

o Bad configuration parameters; sometimes poorly documented:
innodb_max_dirty_pages_pct_lwm=0 (MDEV-24537)

o Particular hardware, firmware, operating system or file system version

e Performance testing introduces one more factor: time to reach steady state

MariaDB Corporation J MariaDB

https://jira.mariadb.org/browse/MDEV-24537

