
Ordered Key-Value Store 1

🏪
Ordered Key-Value Store
🗣 What this presentation is not?

⛔ A comparison of database systems

⛔ A how to guide to build your own ordered key-value store

⛔ A how to guide to build a micro-blogging software

⛔ A sponsored talk about a particular database

😕 An experience report of using an OKVS in production...

🗣 What is this presentation?

📌 Caveat Emptor.

♻ How to make more informed decisions when it comes to database
systems?

⏩ Getting started with Ordered Key-Value Stores programming

Ordered Key-Value Store 2

⏲ Spent time to prepare this presentation: 80 hours

📜 History

⚠ I did not review all of database literature since 1974.

📜 1974: "SEQUEL: A Structured English Query Language" by Chamberlin et
al.

📜 1991: Berkeley DB, an ordered key-value store (later acquired by Oracle,
and forked by Bloomberg)

📜 2008: Cassandra, "speed is all that matters"

📜 2013: FoundationDB, an ordered key-value store that can scale

📜 2017: NewSQL: TiDB, CockroachDB and Spanner

🥳 2018: Apple open sourced FoundationDB

📜 SQL Premise (1974)
"sub-language for both the professional programmer and the
more infrequent data base user"

https://en.wikipedia.org/wiki/SQL#cite_note-chamberlin-boyce-sequel-18
https://en.wikipedia.org/wiki/SQL#cite_note-chamberlin-boyce-sequel-18

Ordered Key-Value Store 3

📜 User survey (2016)

💾 What is a database?

🗣 Query language

🗜 Query optimizer

Infrequent database users as still disappointed.

Ordered Key-Value Store 4

� Execution Engine

💾 Storage

💩 How we choose a database?

🏪 Off-the-shelf solution claiming to be no-code or low-code.

🏬 Vendor support.

🥳 Pop-culture.

🚨 ⇒ No ownership.

🚨 ⇒ Hidden costs.

🥇 How to choose a database?

⚠ - Consider all the features and how they fit into the architecture,
- Create a list of candidates.

⚠ It is all about making tradeoffs.

Ordered Key-Value Store 5

🏗 Describe entities, relations and structure.

🗣 Prototype queries.

🏅 Benchmarks and tests.

🔢 OKVS Concepts
1. Bytes

2. Key and value

3. Key is unique

4. Keys are ordered

5. Range and prefix

6. Lexicographic order

7. Packing and unpacking

8. Lexicographic packing

9. Ordered Mapping of Objects

10. Space and Subspace

11. ☝ Key Composition

12. Copying

13. Fractal

🥚API: Basics
(pack object) → bytevector?

(unpack bytevector) → object

(okvs-in-transaction okvs proc)

Ordered Key-Value Store 6

(okvs-ref okvs key) → bytevector?

(okvs-set! okvs key value)

(okvs-range okvs start end [reverse? [limit]]) → procedure?

(okvs-clear! okvs key)

(okvs-clear-range! okvs start end)

🐣 API: Cursor navigation
(cursor-search okvs key) → <cursor> + position

(cursor-next? cursor) → boolean?

(cursor-previous? cursor) → boolean?

(cursor-key-ref cursor) → bytevector?

(cursor-value-ref cursor) → bytevector?

⭐ Minimal Viable Database

(pack object) → bytevector?

(unpack bytevector) → object

(okvs-in-transaction okvs proc)

(okvs-ref okvs key) → bytevector?

(okvs-set! okvs key value)

(okvs-range okvs start end [reverse? [limit]]) → procedure?

(okvs-clear! okvs key)

(okvs-clear-range! okvs start end)

🐥 API: FoundationDB only!

Ordered Key-Value Store 7

Watches callback: similar to PostgreSQL notify

Atomic operations: add, and, or, xor...

...

🏪 Compendium
time-series

so called "relational" database ie. row store or record store

triple store / quad store / generic tuple store / versioned generic tuple store

space filling curve ⇒ geometric queries

property graph / hyper graph / atom space

approximate string matching

inverted index / backward index / full-text search

ranked set / priority list / leader board

❤ tl;dr:

🏗 Managed essential complexity

🧠 Small procedural interface: binary tree with a cursor

🚀 Extensible: many higher level abstraction are possible

🛠 Usable in your favorite programming language

💔 tl;dr:

Ordered Key-Value Store 8

🦴 Low-level

📚 Little or no documentation

🏗 No independent benchmarks

🚧 No independent tests

🔖 https://okvs.dev

https://okvs.dev/

