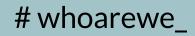
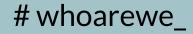
FROM EMOTION TO EMULATION Celebrating 20 years of reverse engineering

• Core PCSX2 contributor

- Core PCSX2 contributor
- CS professor


- Core PCSX2 contributor
- CS professor
- VG industry contractor

- Core PCSX2 contributor
- CS professor
- VG industry contractor
- Reverse engineer, console hacker


whoarewe_

• 98.24% of playable games!

- 98.24% of playable games!
- Website's Alexa rank ~40k, most popular VG emulator I'm aware of

whoarewe_

- 98.24% of playable games!
- Website's Alexa rank ~40k, most popular VG emulator I'm aware of
- Very complex software project

whoarewe_

- 98.24% of playable games!
- Website's Alexa rank ~40k, most popular VG emulator I'm aware of
- Very complex software project
- 20 year old project

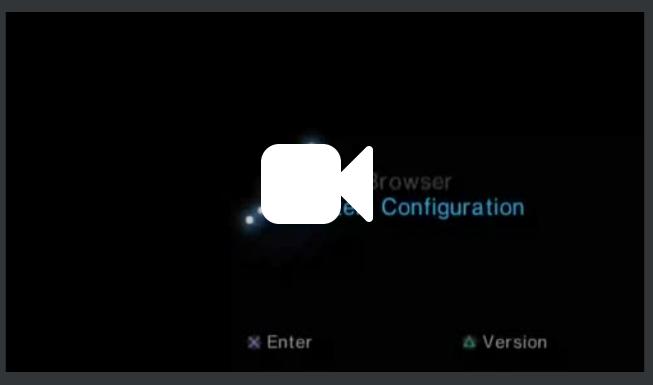
TECHNICALLY A PS2?

BONY

THAT'S STRETCHING IT!

AND A BLACK BOX TO EMULATE

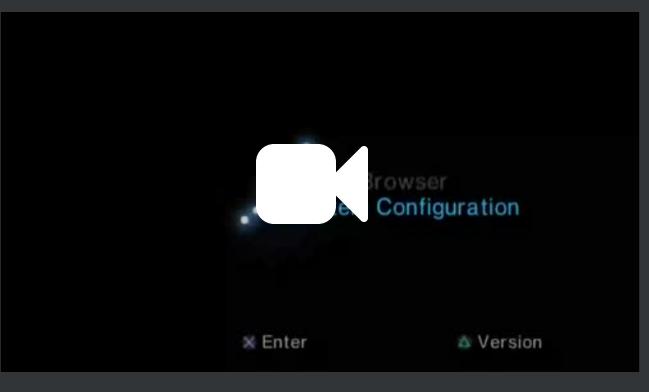
How do we break into one?


BLACK BOX

How do we break into one? We hack its web browser! - failOverflow, circa 2013

BLACK BOX

How do we break into one?


We hack its web browser! - failOverflow, circa 2013

BLACK BOX

How do we break into one?

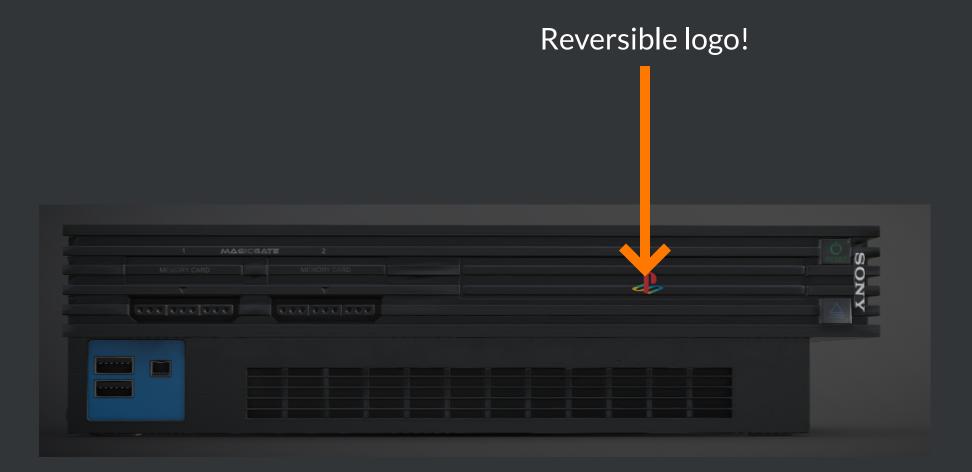
We hack its web browser! - failOverflow, circa 2013

Us, circa 2002

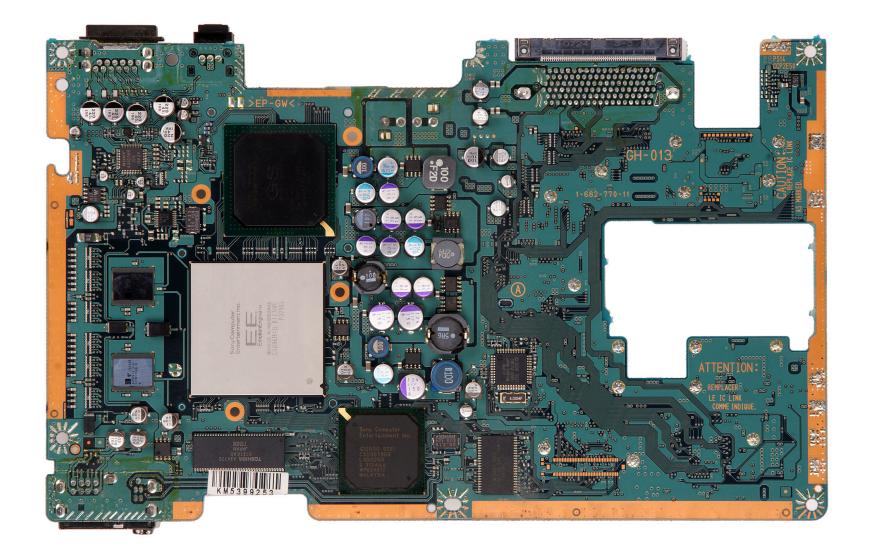
Let's do it the good old way :)

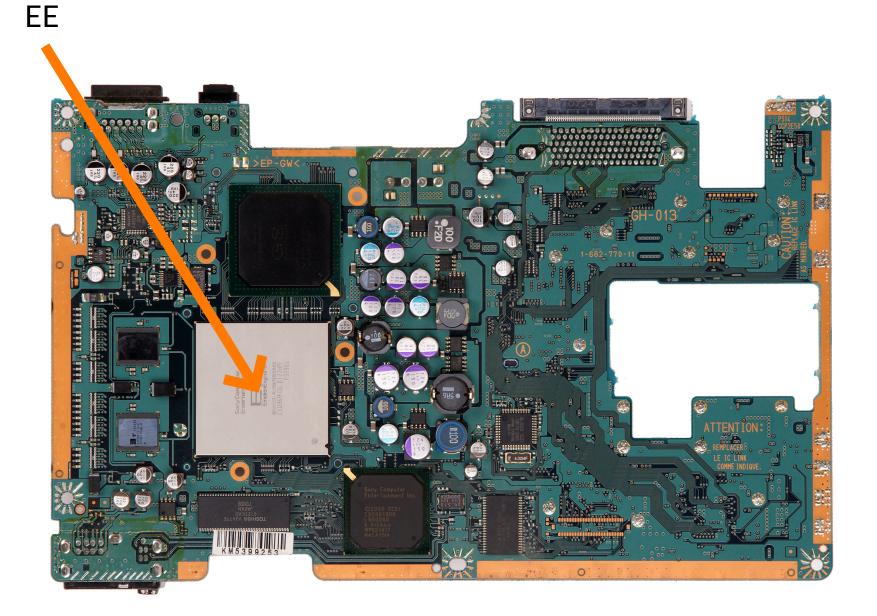
BLACK BOX

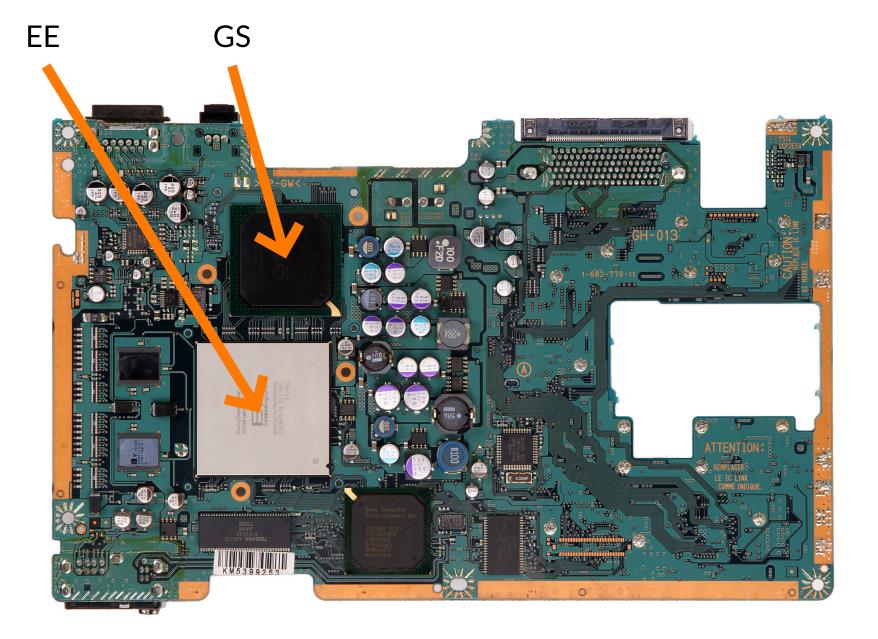
Let's do it the good old way :)

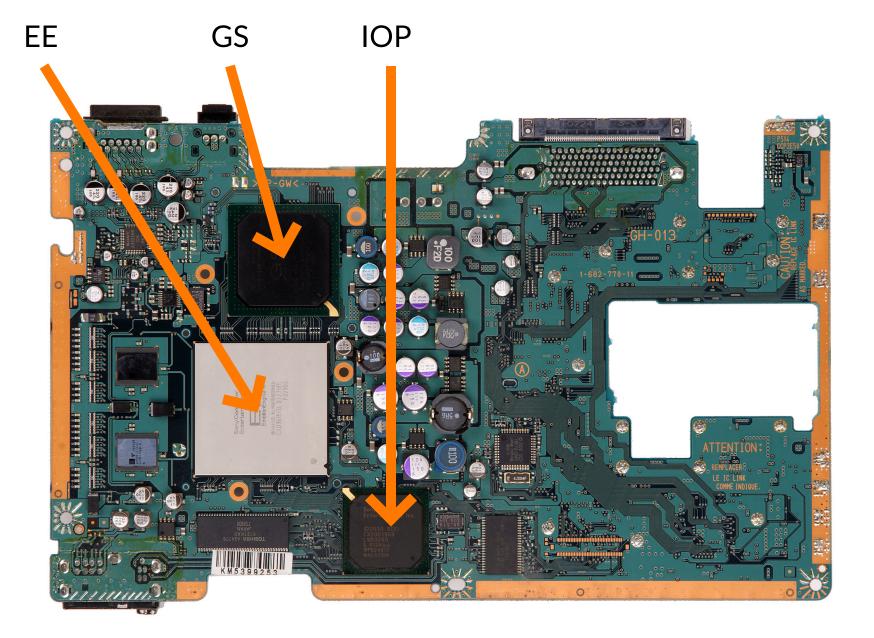

BLACK BOX

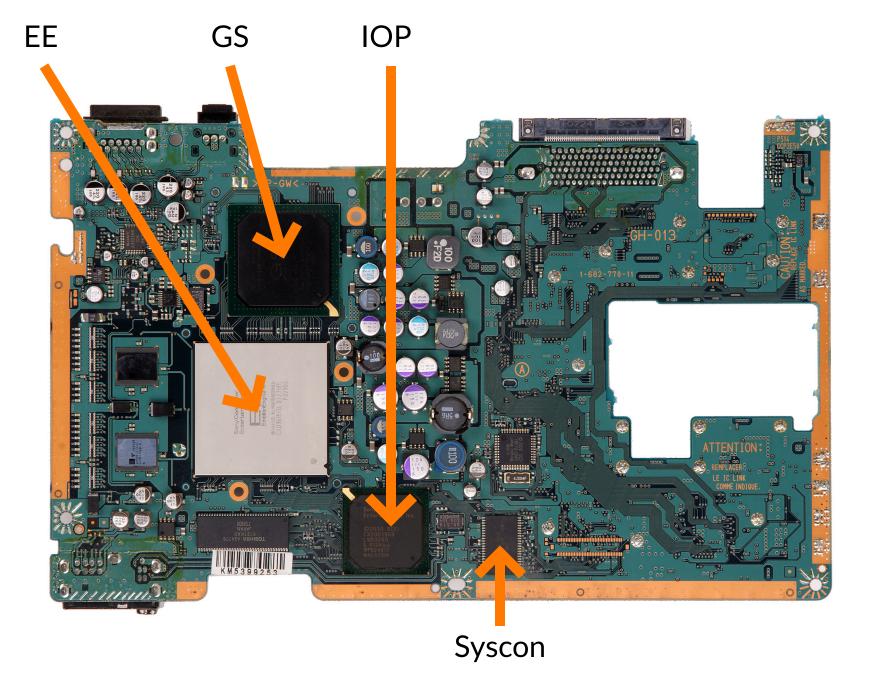
Let's do it the good old way :)

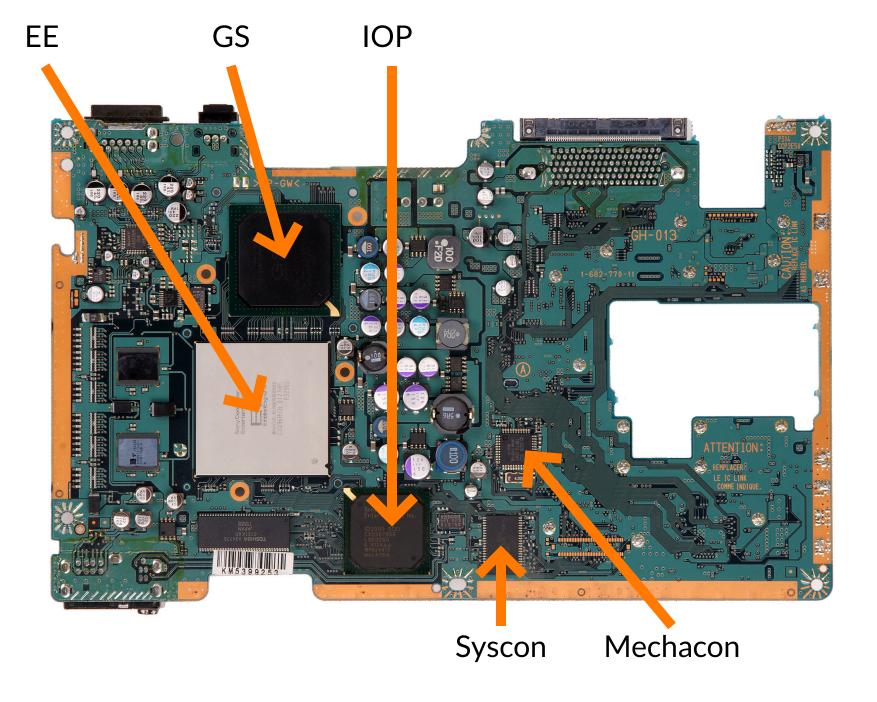


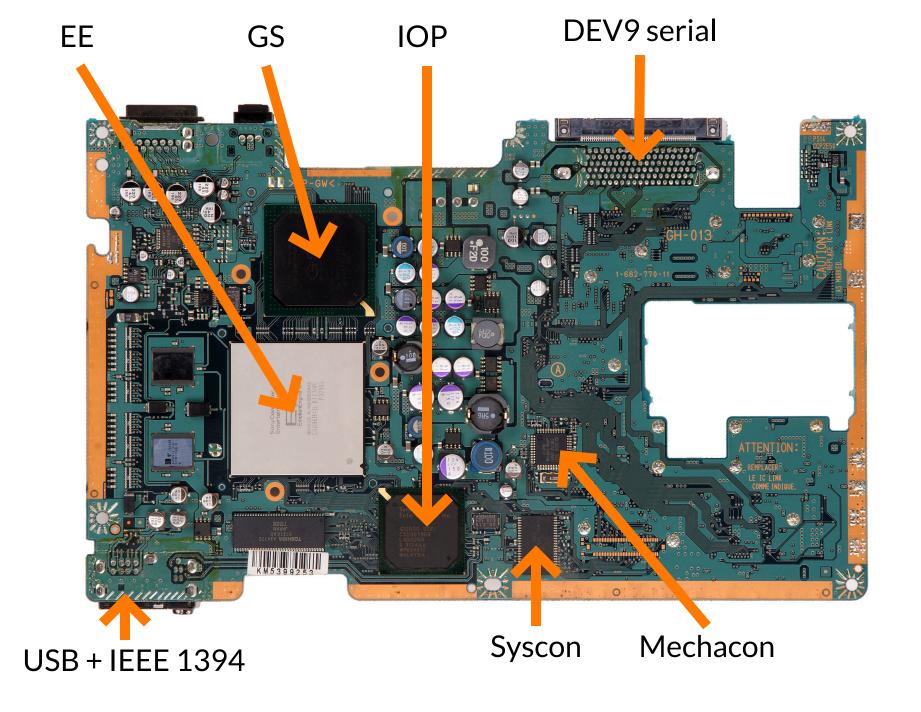

I'll explain first how all of this works and then how we figured it out

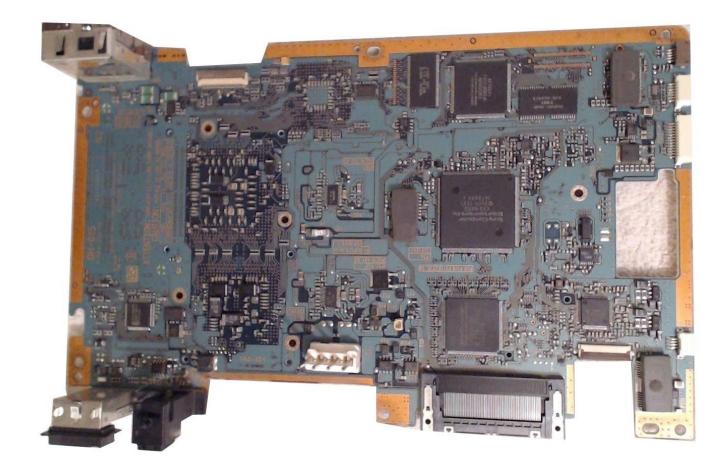

1 144		Ú IO
		Neser 0
		D P

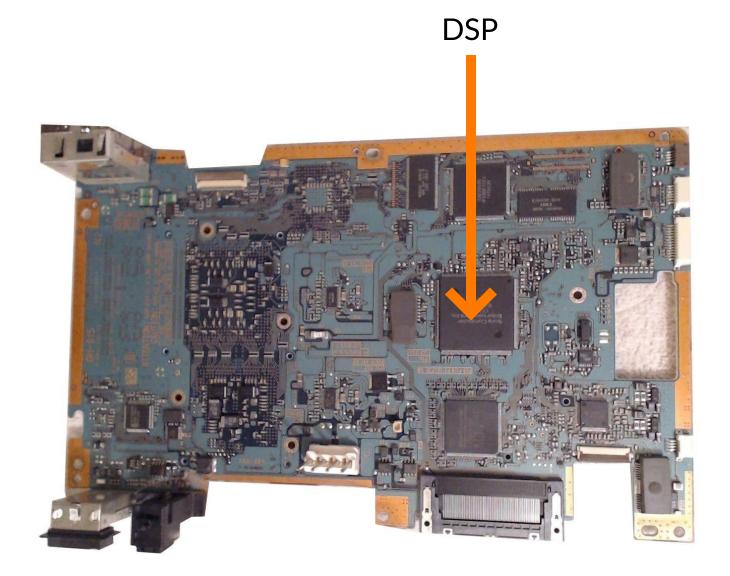



Playstation 2	

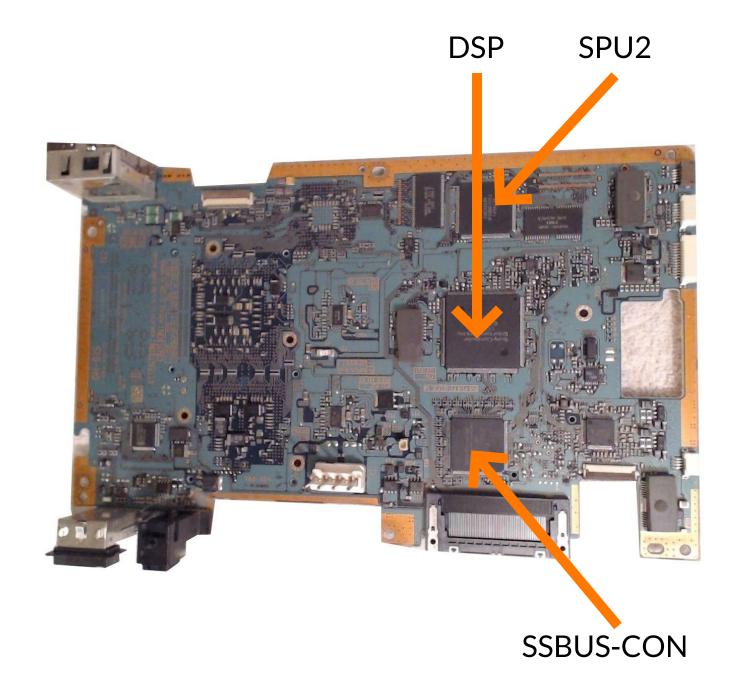


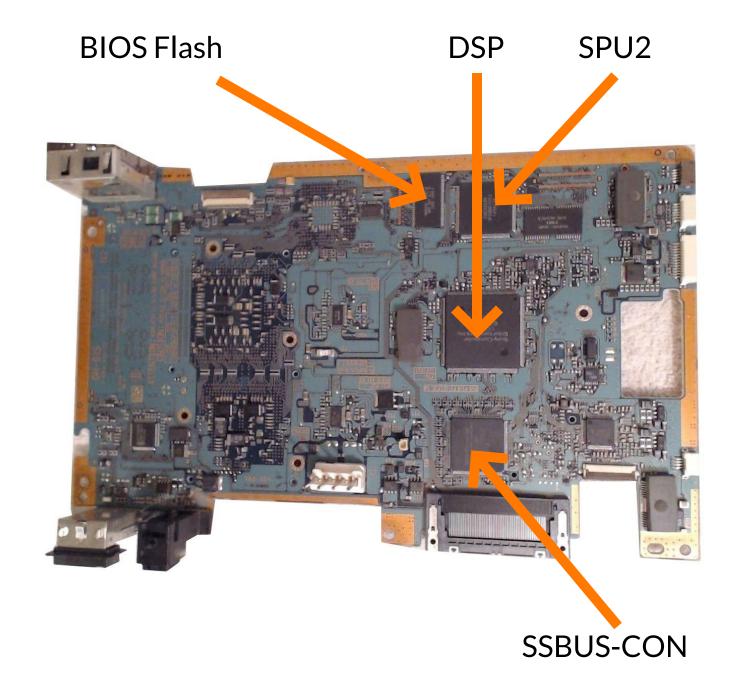












More like what contains the EE

More like what contains the EE

A core with 3 co-processors: (COP)

More like what contains the EE

A core with 3 co-processors: (COP)

• COP0: System co-processor

More like what contains the EE

A core with 3 co-processors: (COP)

- COP0: System co-processor
- COP1: A floating point unit (FPU)

More like what contains the EE

A core with 3 co-processors: (COP)

- COP0: System co-processor
- COP1: A floating point unit (FPU)
- COP2: Vector Unit 0 Macro Mode (VU0 Macro)

More like what contains the EE

A core with 3 co-processors: (COP)

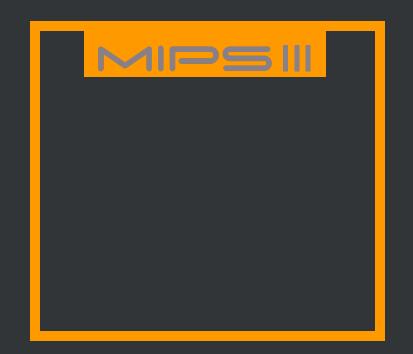
- COP0: System co-processor
- COP1: A floating point unit (FPU)
- COP2: Vector Unit 0 Macro Mode (VU0 Macro)

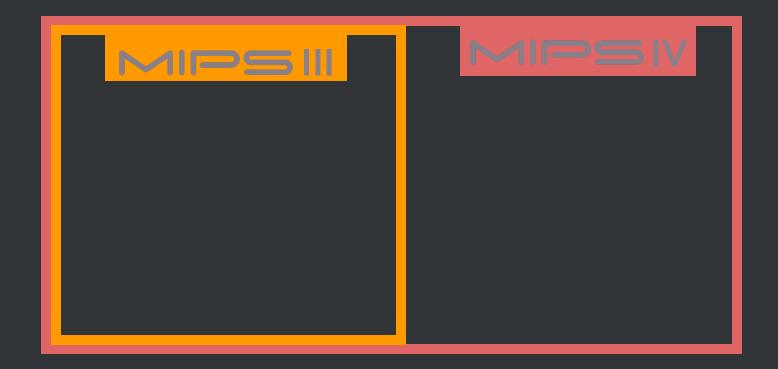
Also partly designed by a chip designer called coolchips for his Master's thesis, pretty cool!

• Image Processing Unit (IPU)

- Image Processing Unit (IPU)
- VPU1

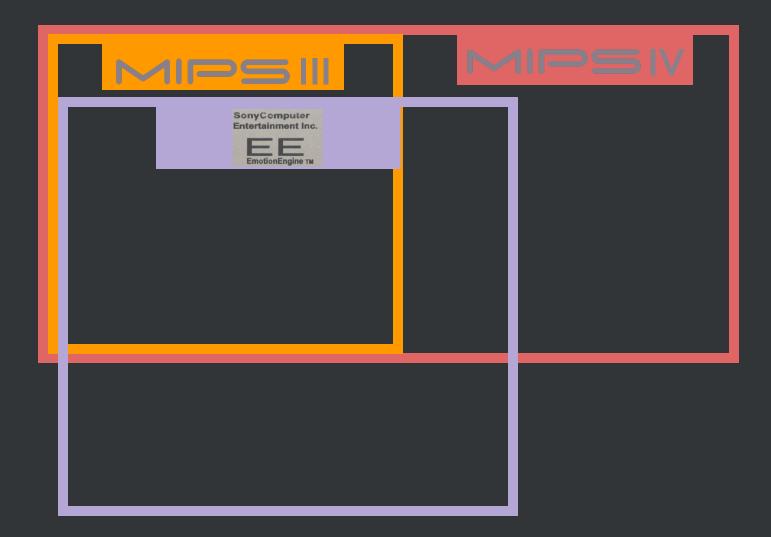
- Image Processing Unit (IPU)
- VPU1
- VPU0 with VU0 accessible as a COP


- Image Processing Unit (IPU)
- VPU1
- VPU0 with VU0 accessible as a COP
- GIF/VIF (Graphics/Vector Interface)


- Image Processing Unit (IPU)
- VPU1
- VPU0 with VU0 accessible as a COP
- GIF/VIF (Graphics/Vector Interface)
- i/dCache + ScratchPad (on die memory)

- Image Processing Unit (IPU)
- VPU1
- VPU0 with VU0 accessible as a COP
- GIF/VIF (Graphics/Vector Interface)
- i/dCache + ScratchPad (on die memory)
- DMA Controller

- Image Processing Unit (IPU)
- VPU1
- VPU0 with VU0 accessible as a COP
- GIF/VIF (Graphics/Vector Interface)
- i/dCache + ScratchPad (on die memory)
- DMA Controller


We're only getting started!

Only the best of MIPS have been used as we will see

EE Core - MIPS

ADD	40 DSUBU	79	SRA
2 ADDI	41 JAL		
3 ADDIU	42 JALR	80	SRAV
ADDU	43 JR	81	SRL
5 AND	44 LB		
ANDI	45 LBU	82	SRLV
BEQ	46 LD	83	SUB
BEQL	47 LDL		
BGEZ BGEZAL	48 LDR 49 LH	84	SUBU
BGEZAL	50 LHU	85	SW
BGEZALL	51 LUI	86	
BGTZ	52 LW		
BGTZL	53 LWL	87	SWR
5 BLEZ	54 LWR	88	SYNC.stype
5 BLEZL	55 LWU		2 I
7 BLTZ	56 MFHI	89	SYSCALL
BLTZAL	57 MFL0	90	TEQ
BLTZALL	58 MOVN		
BLTZL	59 MOVZ 60 MTHI	91	TEQI
L BNE 2 BNEL	61 MTLO	92	TGE
BREAK	62 MULT	93	
	63 MULTU		
DADDI	64 NOR	94	TGEIU
DADDIU	65 OR	95	TGEU
7 DADDU	66 ORI		
B DIV	67 PREF	96	TLT
DIVU	68 SB	97	TLTI
DSLL	69 SD		
DSLL32	70 SDL	98	
2 DSLLV 3 DSRA	71 SDR 72 SH	99	TLTU
DSRA DSRA32	73 SLL	100	TNE
DSRASZ	74 SLLV		
DSRL	75 SLT	101	TNEI
DSRL32	76 SLTI	102	XOR
B DSRLV	77 SLTIU		
DSUB	78 SLTU	103	XORI

EE	Core	add	itions

	ADD	
	ADDI	
	ADDIU ADDU	
	ADDU	
	AND	
	ANDI	
	BEQ	
	BEQL	
	BGEZ	
	BGEZAL	
	BGEZALL	
	BGEZL	
13	BGTZ	
14 15	BGTZL BLEZ	
	BLEŻ	
	BLEZL	
	BLTZ	
	BLTZAL	
19 20	BLTZALL BLTZL	
	BLTZL	
	BNE	
	BNEL	
	BREAK	
	DADD	
	DADD DADDI DADDIU	
	DADDIU	
	DADDU	
	DIV	
	DIVU	
	DSLL DSLL32 DSLLV	
	DSLLV DSRA	
	DSRA32	
	DSRAV	
	DSRAV DSRL DSRL32 DSRLV	
50	DSKLV DSUB	
	0306	

 40
 DSUBU

 41
 JAL

 42
 JALR

 43
 JR

 44
 LB

 45
 LBU

 46
 LD

 47
 LDL

 48
 LDR

 49
 LH

 51
 LUI

 52
 LW

 53
 LWU

 54
 LWR

 55
 LWU

 54
 LWR

 57
 MFLO

 58
 MOVN

 59
 MOLTU

 60
 MTHI

 61
 MTLO

 62
 MULTU

 63
 MULTU

 64
 SB

 65
 OR

 66
 ORI

 67
 PREF

 68
 SB

 69
 SD

 70
 SDR

 71
 SDR

 72
 SH

 73
 SLT1

 75
 SLT1
 </tr

	DIV1		PCPYLD	1	82	PMTL0
	DIVU1		PCPYUD	1	83	PMULTH
106			PDIVBW		84	PMULTUW
107			PDIVUW		85	PMULTW
	MADD1		PDIVW			
	MADDU		PEXCH		86	PNOR
	MADDU1		PEXCW		87	POR
	MFHI1		PEXEH	1	88	PPAC5
	MFL01		PEXEW	1	89	PPACB
	MFSA		PEXT5	1	90	PPACH
	MTHI1 MTLO1		PEXTLB PEXTLH	1	91	PPACW
	MTSA		PEXTLH		92	PREVH
	MTSAB		PEXTUB		93	PROT3W
	MTSAH		PEXTUH			
	MULT		PEXTUW		94	PSLLH
	MULT1		PHMADH		95	PSLLVW
121	MULTU		PHMSBH		96	PSLLW
122	MULTU1	161	PINTEH	1	97	PSRAH
123	PABSH		PINTH	1	98	PSRAVW
	PABSW	163	PLZCW	1	99	PSRAW
	PADDB	164	PMADDH		00	PSRLH
	PADDH		PMADDUW		01	PSRLVW
	PADDSB		PMADDW		02	PSRLW
	PADDSH		PMAXH			
	PADDSW		PMAXW		03	PSUBB
	PADDUB		PMFHI		04	PSUBH
	PADDUH		PMFHL.LH	2	05	PSUBSB
132	PADDUW PADDW		PMFHL.LW	2	06	PSUBSH
	PADDW	173	PMFHL.SH PMFHL.SLW	2	07	PSUBSW
135	PADSBR	174		2	08	PSUBUB
	PCEQB	175			09	PSUBUH
	PCEQH		PMINH		10	PSUBUW
	PCEQW		PMINW			
	PCGTB		PMSUBH			PSUBW
140	PCGTH		PMSUBW		12	PXOR
141			PMTHI		13	QFSRV
142	РСРҮН	181	PMTHL.LW	2	14	SQ

EE - COPO

PCPYLD
 PCTVUD
 PDIVUW
 PDIVW
 PEXCH
 PEXCW
 PEXEW
 PEXT5
 PEXTLB
 PEXTLW

 PEXTUB

 7 PEXTUH

 9 PEXTUH

 9 PEXTUH

 9 PHADH

 0 PIHNSBH

 1 PINTEH

 2 PINTH

 3 PLCW

 4 PMADDH

 5 PMADDW

 6 PMADDW

 9 PMFHL

 9 PMFU0

 9 PMSUBH

 9 PMSUBW

 9 PMFH1

 19 PMTH1

40 DSUBU 41 JAL 42 JALR 43 JR 44 LB 45 LBU 46 LD 47 LDL 48 LDR 49 LH 50 LHU 51 LUX 53 LWL 54 LWR 55 LWU 56 MFHI 57 MFLO 58 MOVN 59 MOVN 60 MTHI 61 MTLO 63 SB 69 SD 60 ORI 67 PREF 68 SB 69 SDL 71 SDR 72 SH 74 SLLV	DIVU1 LQ MADD MADD1 MADDU MADDU1 MFH11 MFL01 MTH11 MTL01 MTL01 MTSA	$\begin{array}{c} 143\\ 144\\ 144\\ 144\\ 144\\ 144\\ 144\\ 144\\$
75 SLT 76 SLTI 77 SLTIU 78 SLTU 78 SLTU		PMTLO PMULTH PMULTU PNOR PDR PPAC5 PPACB PPACB PPACC PREVH PSUCH PSULW PSULW PSULW PSULW PSULW PSULW PSULW PSULW PSUBH PSUBBB PSUBBH PSUBBBB PSUBBH PSUBBW

 1
 ADD

 2
 ADDI

 2
 ADDI

 3
 ADDIU

 4
 ADDI

 5
 ANDI

 6
 ANDI

 6
 ANDI

 7
 BEQ

 9
 BGEZ

 10
 BGEZAL

 11
 BGEZAL

 12
 BGEZ

 13
 BGTZ

 14
 BGTZ1

 15
 BLEZ

 16
 BLEZL

 17
 BLTZAL

 18
 BLTZAL

 20
 BLTZAL

 21
 BNE

 22
 BNEL

 23
 BREAK

 24
 DADD

 25
 DADUL

 26
 DADDIU

 27
 DADUL

 28
 DSRA

 30
 DSRA

 34
 DSRA32

 35
 DSRLY

 36
 DSUB

 9
 SRA

 80
 SRAV

 81
 SRIV

 82
 SRIV

 83
 SUB

 84
 SUBU

 85
 SW

 86
 SWR.

 88
 SYNC.stype

 99
 SYSCALL

 90
 TEQI

 91
 TEQI

 92
 TGET

 93
 TGETU

 94
 TGETU

 95
 GGU

 96
 TEQI

 97
 TLT

 98
 THE

 191
 THEI

 192
 XOR

 193
 XORI

40 DSUBU

215		
216	BC0FL	
217	BCOT	
218	BCOTL	
219	CACHE BFH	
220	CACHE BHINBT	
221	CACHE BXLBT	
222	CACHE BXSBT	
223	CACHE DHIN	
	CACHE DHWBIN	
225	CACHE DHWOIN	
226	CACHE DXIN	
	CACHE DXLDT	
228		
229		
	CACHE DXSTG	
231	CACHE DXWBIN CACHE IFL CACHE IHIN	
232	CACHE IFL	
233	CACHE IHIN	
234		
235		
236		
237		
238		
239	DI	
240	EI	
241	ERET	
242	MFBPC MFC0	
243		
244		
245 246		
240 247		
247		
248	MFIAB	
249 250	MFIABM MFPC	
250 251	MFPC	
251		
253		
	mee	

254	MTDAB
255	MTDABM
256	MTDVB
257	MTDVBM
258	MTIAB
259	MTIABM
260	MTPC
261	MTPS
262	TLBP
263	TLBR
264	TLBWI
265	TLBWR

EE - COP1

1 ADD 2 ADDI	40 DSUBU 41 JAL				
3 ADDIU 4 ADDU 5 AND 6 ANDI 7 BEQ 8 BEQL 9 BGEZ 10 BGEZALL 12 BGEZALL 13 BGTZ 14 BGEZL 15 BLEZ 16 BLEZL 17 BLTZ 20 BLTZL 21 BNEL 22 BNEL 23 BREAK 24 DADDI 25 DADDI 26 DADDIU 27 DADU 28 DSLL 31 DSRA32 33 DSRA32 34 DSRA32 35 DSRAV 36 SRAV 36 SRAV 36 SRAV 37 DSUB	41 JAL 42 JALR 43 JR 44 LB 45 LBU 46 LD 47 LOL 48 LDR 49 LH 50 LHU 51 LUI 53 LWL 54 LWR 55 MOVN 58 MOVN 59 MOVZ 60 MTHI 61 MTHO 62 MULTU 63 SD 64 NOR 65 SD 71 SDR 72 SH 73 SLL 75 SLT 76 SLT1 77 SLT1 78 SLTU	MULTU1 PABSH PADBH PADBB PADDB PADDB PADDSH PADDSH PADDSH PADDUB PADDUW PADDW PADDW PADDW PADDW PADDW PADDW PADDW PADDW PADDW PADDW PADDW PADDW PADDW PADDW PADDW PADDW PADDH PADDW PADDH PADDW PADDH PADDW PADDH PADDW PADDH PADDSH PADDH PADSH PADSH PADSH PADSH PADSH PADSH PADSH PADSH PADSH PASS PADSH PASS PASS PASS PASS PASS PASS PASS PA	MULTH MULTUW MULTW WOR	UD BW UW W H H S LB LB LH LW UB UH UH UH UH UH UH UH UH UH UH UH LLH LL	215 BCOF 216 BCOFL 217 BCOTL 218 BCOTL 219 CACHE 220 CACHE 221 CACHE 222 CACHE 223 CACHE 224 CACHE 225 CACHE 226 CACHE 227 CACHE 228 CACHE 229 CACHE 220 CACHE 221 CACHE 222 CACHE 223 CACHE 224 CACHE 225 CACHE 226 CACHE 227 CACHE 228 CACHE 229 CACHE 230 CACHE 231 CACHE 232 CACHE 233 CACHE 234 CACHE 235 MFEO 244 MFEO 243 MFEO 244 MFEDAB 245
33 SUB 84 SUBU 85 SWL 86 SML 87 SWR 88 SYNC.stype 99 FEQ 91 FEQ 92 TEGE 93 TEGE 94 TEGEU 95 TEGEU 96 TLT 98 TLTIU 98 TLTUU 100 TME 102 XOR 103 XORI		194 F 195 F 196 F 197 F 200 F 200 F 201 F 202 F 203 F 204 F 205 F 206 F 206 F 208 F 208 F 208 F	PAC5 PACB PACH		254 MTDAB 255 MTDABM 256 MTDVB 257 MTDVBM 258 MTIAB 259 MTIABM 260 MTPC 261 MTPS 262 TLBP 263 TLBR 264 TLBWI 265 TLBWR

266	ABS.S	
267	ADD.S	
268	ADD	
269	ADDA.S	
	BC1F	
	BC1FL	
	FP False	9
273	BC1T	
274	BC1TL	
	FP True	Likel
276		
	CVT.S.W	
279	CVT.W.S	
280	DIV.S	
	LWC1	
282	MADD.S	
283	MADDA.S	
	MAX.S	
285	MFC1	
286		
287	MOV.S	
288	MSUB.S	
289	MSUBA.S	
	MTC1	
291	MUL.S	
292	MULA.S	
	NEG.S	
294	RSQRT.S	
295	SQRT.S	
296	SUB.S	
297	SUBA.S	
298	SWC1	

EE - COP2

40 DS0B0 41 JAL				
41 JAL 42 JALR 43 JR 44 LB 45 LBU 46 LD 47 LDL 48 LDR 49 LH 50 LHU 51 LUI 52 LW 53 LWL 54 LWR 55 LWU 54 LWR 55 LWU 57 MFLO 58 MOVN 59 MOVZ 60 MTHI 61 MTLO 62 MULT 64 NOR 65 OR 66 ORI 67 PREF 68 SB 69 SD 70 SDL 71 SDR 72 SH 73 SLL 74 SLLV 75 SLTI 77 SLTIU 78 SLTU 78 SLTU 78 SLTU	DIV1 DIV1 DIV1 DIV1 DIV1 DIV1 DIV1 MADD1 MADD1 MADD1 MADD1 MADD1 MADD1 MADD1 MAD1 MA	, "H "UW	215 216 217 218 219 222 222 222 222 222 222 222 222 233 234 234	BCOF BCOFL BCOTL CACHE BCOTL CACHE BHINBT CACHE BHINBT CACHE BKLBT CACHE DAUST CACHE DHIN CACHE DAUST CACHE DAUST CACHE DAUST CACHE DAUST CACHE DAUST CACHE DAUST CACHE DAUST CACHE IXIN CACHE IXSDT CACHE IXST CACHE IXST GACHE IXST GACHE IXST MFDAB MFDAB MFDAB MFDAB MFDAB MFDAB MFDAB MFIAB MFIAB MFIAB MFIAB MFIAB MFIAB MFIAB MFDC MFDC
	188 PPACE 189 PPACE 190 PPACH 190 PPACH 191 PPACH 192 PREVH 193 PROT3 194 PSLLV 196 PSLLV 197 PSRAH 198 PSRAH 200 PSRLV 201 PSRLV 202 PSRLV 203 PSUBS 204 PSUBS 205 PSUBS 206 PSUBS 207 PSUBS 208 PSUBS 209 PSUBS 209 PSUBS 209 PSUBS 209 PSUBS 201 PSUS 201 P	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	255 256 257 258 260 261 262 263 264	MTDAB MTDABM MTDVB MTDVBM MTIAB MTIABM MTPC MTPS TLBP TLBR TLBWI TLBWI
	210 PSUBU 211 PSUBW 212 PXOR 213 QFSRV 214 SQ	1		

 1
 ADD

 2
 ADDI

 3
 ADDIU

 4
 ADDU

 5
 AND

 6
 ANDI

 6
 ANDI

 7
 BEQ

 9
 BGEZ

 10
 BGEZAL

 11
 BGEZAL

 13
 BGTZ

 14
 BGTZ

 15
 BLEZ

 16
 BLEZL

 17
 BLTZALL

 19
 BLTZALL

 20
 BLTZALL

 21
 BNE

 22
 BREAK

 23
 BREAK

 24
 DADDI

 25
 DADDIU

 26
 DADDIV

 27
 DADU

 28
 DSLL32

 29
 DIVU

 30
 DSRA32

 35
 DSRL32

 36
 DSRL32

 38
 DSRL32

 39
 DSUB

 9
 SRA

 80
 SRAV

 81
 SRIV

 82
 SRIV

 83
 SUB

 84
 SUBU

 85
 SW

 86
 SWR.

 88
 SYNC.stype

 99
 SYSCALL

 90
 TEQI

 91
 TEQI

 92
 TGET

 93
 TGETU

 94
 TGETU

 95
 GGU

 96
 TEQI

 97
 TLT

 98
 THE

 191
 THEI

 192
 XOR

 193
 XORI

40 DSUBU

ABS.S
ADD.S
ADD
ADDA.S
BC1F
BC1FL
FP False
BC1T
BC1TL
FP True Likely
CFC1 CTC1
CTC1
CVT.S.W
CVT.W.S
DIV.S
LWC1
MADD.S
MADDA.S
MAX.S
MFC1
MIN.S
MOV.S
MSUB.S
MSUBA.S MTC1
MTC1 MUL.S
NEG.S
RSQRT.S
SQRT.S
SUB.S
SUBA.S
SWC1

9	BC2F	
	BC2FL	
)1	BC2T	
)2	BC2TL	
)3	CFC2	
)4	CTC2	
)5	LQC2	
10 11 12 13 14 15 16 17 18 19 .0	QMFC2	
)7	QMTC2	
8(SQC2	
)9	VABS	
	VADD	
	VADDi	
	VADDq	
	VADDbc	
	VADDA	
	VADDAi	
.6	VADDAq	
	VADDAbc	
.1 .2 .3 .4 .5 .6 .7	VCALLMS	
.9	VCALLMSR	
20	VCLIP	
!1	VDIV	
	VFIUI0	
.3	VFIUI4	
.4) E		
.0		
.0 90	VIIWR	
.) 30	VTOR	
81	VISUB	
32	VISWR	
3	VITOF0	
012345678901234567	BC2FL BC2FL BC2T BC2TL CFC2 CTC2 LQC2 QMFC2 QMTC2 SQC2 VABS VADD VADD VADDA VADA VADDA VADDA VADDA VADDA VADA VADA VADA VADA VADA VADA VA VATON VATON VATON VATON VATON VATON VATON VATON VATON VATON VATON VATON VATON VATON VATON VATON VATON VADD VADD VATON VATON VI VI VI VI VI VI VI VI VI VI VI VI VI	
35	VIT0F12	
6	VITOF15	
37	VLQD	

338	VLQI
339	VMADD
340	VMADDi
341 342 343	VMADDa
342	VMADDA
343	VMADDA VMADDA VMADDA VMADDA VMADDA VMAX
344	VMADDAd
345	VMADDA
346	VMAX
347	VMAXi
348	VMAXbc
349	VMETD
350	VMFIR VMINI VMINI VMINIbo VMOVE
251	VMINIi
352 353	VMINIbo
353	VMOVE
354	VMR5Z
355	VMSUB
356	VMSUBi
357	VMSUBq
358	VMSURh
359	VMSUBA
รลด	VMSUBA
361	VMSUBA
362	VMSUBA VMSUBA VMSUBA VMSUBA
363	VMTIR
364	VMUL
365	VMULi
366	VMULq
367	VMULbc
368	
1369	VMULAi
370 371	VMULAq
371	VMULAbo
372	VNOP
373	VMULAi VMULAq VMULAbo VNOP VOPMULA VOPMSUE
374	VOPMSUE
375	VRGET
376	VRINIT

377	VRNEXT
378	VRSQRT
379	VRXOR
380	VSQD
381	VSQI
382	VSQRT
383	VSUB
384	VSUBi
385	VSUBq
386	VSUBbc
387	VSUBAi
388	VSUBAq
389	VSUBAbc
390	VWAITQ

This	79 SRA 81 SRLV 82 SRLV 83 SUB 84 SUBU 85 SW 86 SYNC.stype 88 SYNC.stype 89 SYSCALL 91 TEQI 92 TGE 93 TGEU 94 TLTI 95 TLTI 96 TLTI 97 TLTI 98 TLTI 99 TLTI 99 TLTI 99 TNEI 100 TNEI 102 XORI 103 XORI	1 ADD 2 ADDI 3 ADDIU 4 ADDU 5 AND 6 ANDI 7 BEQ 9 BGEZ 10 BGEZAL 11 BGEZAL 12 BGEZ 13 BGTZ 14 BGTZL 15 BLEZ 16 BLEZL 17 BNE 20 BNTZAL 20 BNEL 21 BNE 22 BADDI 25 DADDI 26 DADDIU 27 DADDU 28 DIV 29 DIVU 30 DSLLV 31 DSLL2 32 DSRAV 36 DSRL 37 DSRL3 38 DSRL4
is		
; 1	74 75 76 77 78	
the	SLLV SLT SLTI SLTIU SLTU	DSUBU JAL JALR JR LBU LDU LDU LDU LUN LWU LWU LWU LWU LWU MFHI MGUN MOVN MMOVZ MTHI MULT MULT MULT NOR ORI PREF SB SDU SDU SDU SDU SDU SSL

MIPS part!

EE - COP2

143 PCPYLD 144 PCPYUD

5 PDIVBW

9 PEXCW

PEXEW

PEXTLH

PEXTUB

PEXTUW

PHMADH PHMSBH

PMADDUW

5 PMADDW

7 PMAXH 8 PMAXW

PMFHL.LH PMFHL.LW

PMFHL.SH PMFHL.SLW

8 PMSUBH

PMSUBW

180 PMTHI

181 PMTHL.LW

104 DIV1 105 DIVU1

6 LQ 7 MADD

B MADD1

MADDU MADDU1

MFL01

14 MTHI1

115 MTL01

MTSAB

B MTSAH

MULTU 22 MULTU1

B PABSH

7 PADDSB

PADDSW

PADDUB

A PADSBH

31 PADDUH

132 PADDUW

35 PAND

6 PCEQB

138 PCEQW

139 PCGTB

141 PCGTW 142 PCPYH

182 PMTL0 183 PMULTH

184 PMULTUW

185 PMULTW 186 PNOR

189 PPACB 190 PPACH

191 PPACW

193 PR0T3W

194 PSLLH

195 PSLLVW

197 PSRAH

199 PSRAW 199 PSRAW 200 PSRLH

201 PSRLVW

202 PSRLW

203 PSUBB 204 PSUBH

205 PSUBSB

206 PSUBSH 207 PSUBSW 208 PSUBUB 209 PSUBUH

210 PSUBUW 211 PSUBW 212 PX0R 213 QFSRV

214 SQ

7 PCEQH

124 PABSW

125 PADDB

	BCGFL BCGTL BCGTL CACHE	1	
54 55 56 57 58 60 62 63 64 65	MTI MTI MTI MTI MTI MTI TLE	IABM PC PS 3P 3R 3WI	

215 BC0F

2666 2677 268 2690 2711 2722 273 274 275 276 277 278 279 280 281 282 283 284 285 286 283 284 285 288 289 290 291 292 293	ABS.S ADD.S ADDA.S BC1F BC1FL FP False BC1TL FP True CFC1 CTC1 CVT.S.W CVT.W.S DIV.S LWC1 MADDA.S MADDA.S MADDA.S MADDA.S MADDA.S MSUBA.S MSUBA.S MULA.S NEG.S		
294 295 296 297 298	RSQRT.S SQRT.S SUB.S SUBA.S SWC1		

C2F	
C2F C2FL	
22T 22TL 7C2 7C2 (C2	
2TL	
-C2	
TC2	
)C2	
1FC2	
1FC2 1TC2	
)C2	
ABS	
ADD	
ADD ADDi	
ADDq	
ADDbc	
ADDA	
ADDAi	
DDAa	
ADDAbc	
ADDAbc CALLMS CALLMSR CLIP DIV	
CALLMSR	
CLIP	
VIV	
TOI0	
TOIO TOIA TOI12 TOI15 TADD TADDI	
T0I12	
T0I15	
IADD	
IADDI	
[LWR	
IOR	
ISUB	
ISWR	
ELWR EOR ESUB ESWR ETOF0 ETOF4	
TOF4	
T0F12	
T0F12 T0F15	
_QD	

299 B(

300 BC

301 BC

302 BC

303 CI

304 C

305 L

306 QI

307 QN

308 SC

309 VA

310 VA

311 VA

312 VA

313 V

314 V

315 VA

316 VA

317 VA

318 V

319 V

320 V

321 VC

322 VI

323 V

324 VI

326 V 327 V

328 V

329 V

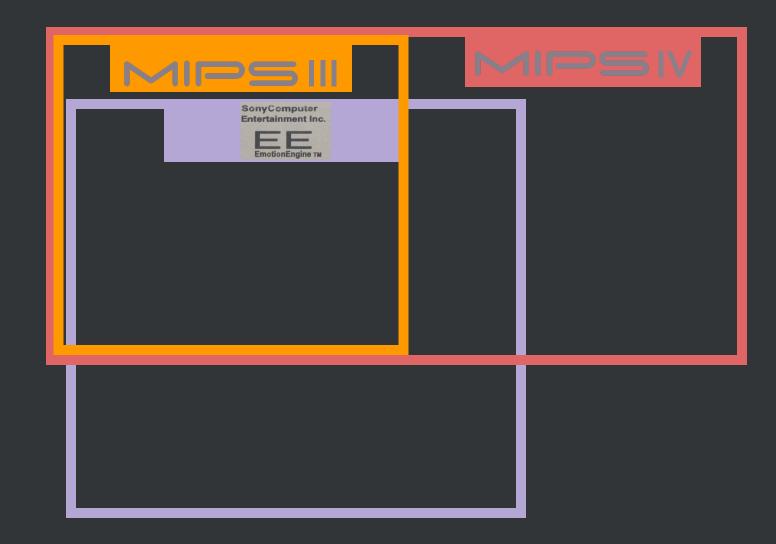
330 V

331 V

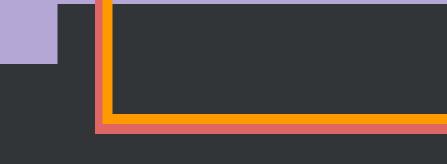
332 V 333 VI

334 V

335 V


336 VI

337 VI


338	VLQI
339	VMADD
340	VMADDi
341	VMADDq
342	VMADDA
343	VMADDAi
344	VMADDAi VMADDAq VMADDAb VMADDAb
345	VMADDAb
346	VMAX
347	VMAXi
348	VMAXi VMAXbc
349	VMFIR
350	VMINI
351	VMINIi
352	VMINIbc
353	VMOVE
354	VMR32
355	VMSUB
356	VMSUBi VMSUBq VMSUBbc
357	VMSUBq
358	VMSUBbc
359	VMSUBA
360	VMSUBAi
361	VMSUBAq
362	VMSUBAb
363	VMTIR
364	VMUL
365 366	VMULi
366	VMULq
367	VMULbc
368	VMULA
369	VMULAi VMULAq
370	
371	VMULAbc
372	VNOP
373	VOPMULA VOPMSUB
374	VOPPISOB
375 376	VRINIT
570	

1/1 0.7

377	VRNEXT
378	VRSQRT
379	VRXOR
380	VSQD
381	VSQI
382	VSQRT
383	VSUB
384	VSUBi
385	VSUBq
386	VSUBbc
387	VSUBAi
388	VSUBAq
389	VSUBAbc
390	VWAITQ

DELAY SLOTS

1 lw t5,0x0(t7) ; t5 = MEM[t7] 2 jr t5 ; jump to t5 3 addiu t5,t5,4 ; t5+=4

DELAY SLOTS

DELAY SLOTS

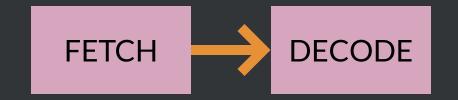
1 lw t5,0x0(t7) ; t5 = MEM[t7]
2 jr t5 ; jump to t5
3 addiu t5,t5,4 ; t5+=4

DELAY SLOTS

1 lw t5,0x0(t7) ; t5 = MEM[t7] 2 jr t5 ; jump to t5 3 addiu t5,t5,4 ; t5+=4

A CPU executes instructions by passing through multiple steps

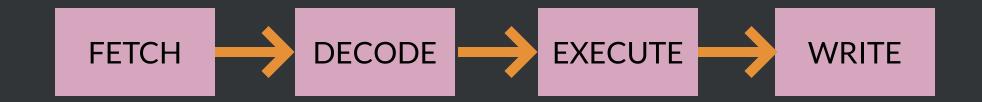
A CPU executes instructions by passing through multiple steps



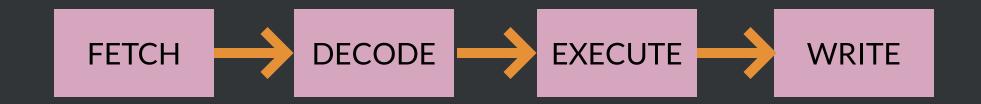
A CPU executes instructions by passing through multiple steps

A CPU executes instructions by passing through multiple steps





We call those a pipeline

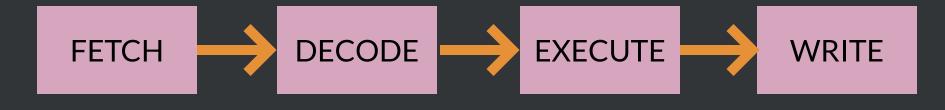


Not exactly true but it'll work for now

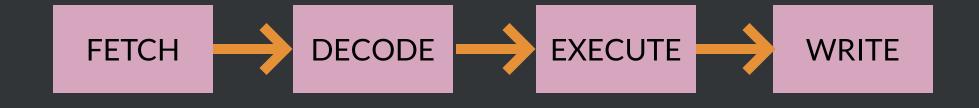
We call those a pipeline

Not exactly true but it'll work for now

The execute step will also be used as memory access

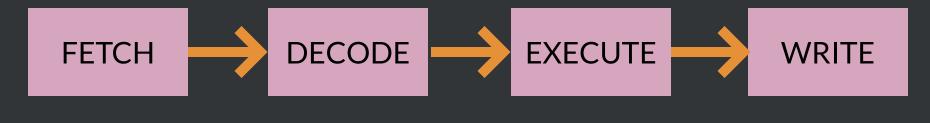


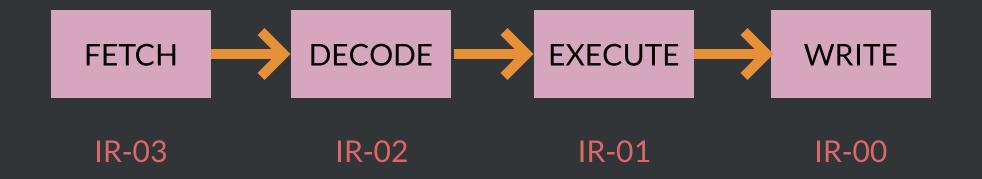
78 00 b3 ff



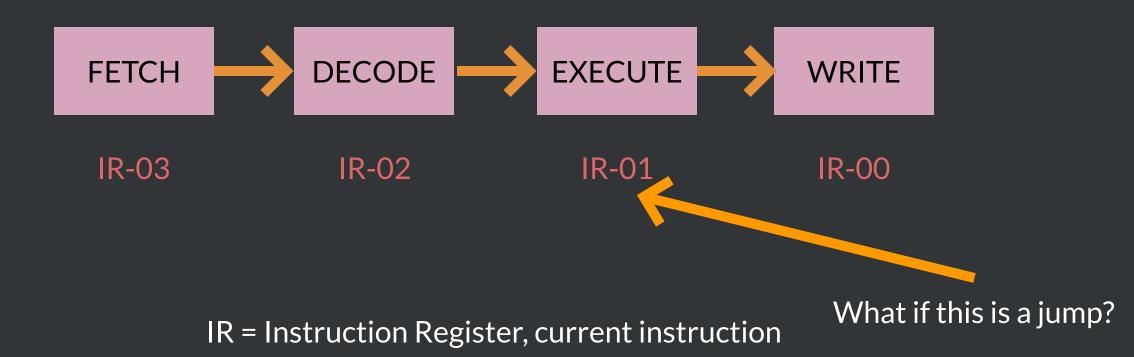
sd s3,0x78(sp)

sd s3, FF

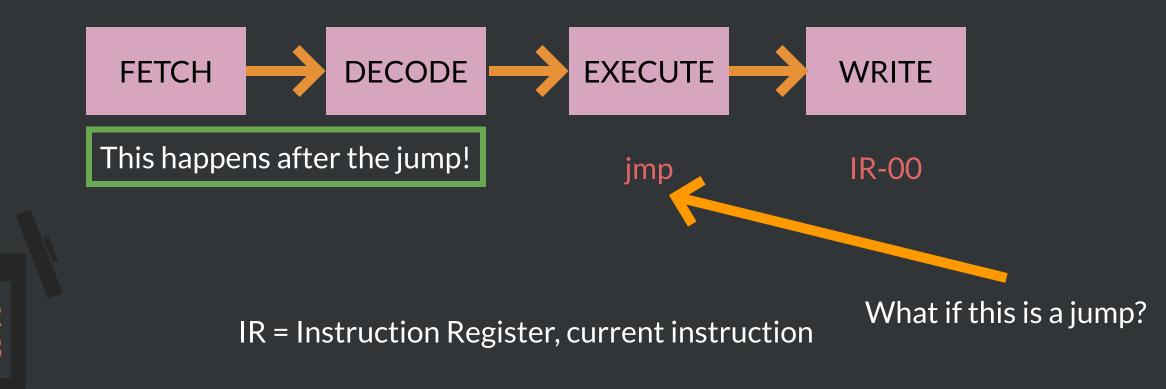


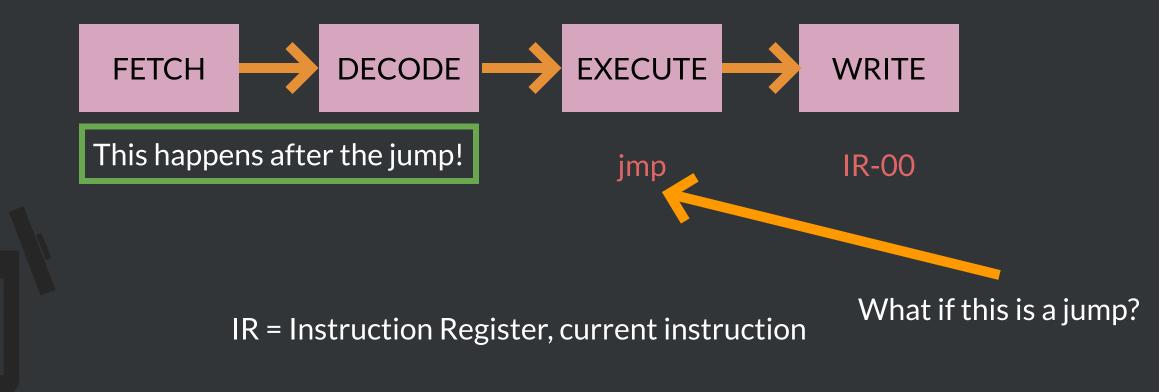


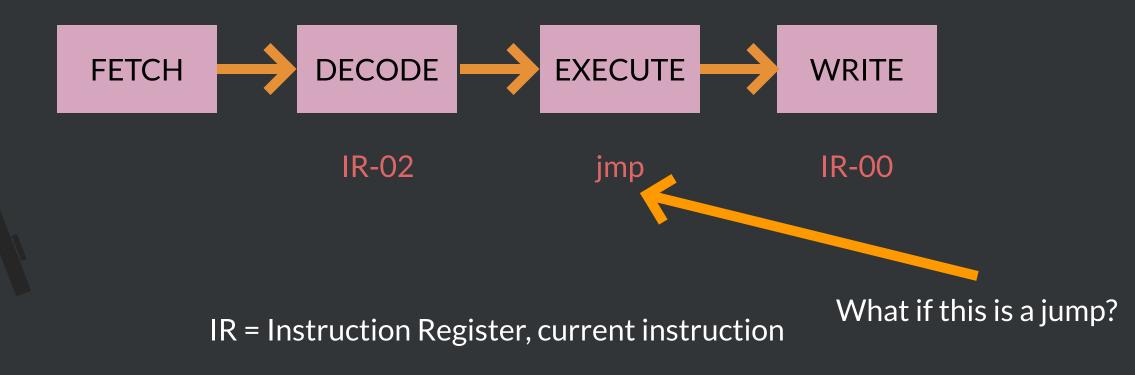
In reality all of those steps are executed in parallel on multiple instructions



IR = Instruction Register, current instruction






Instead of wasting 2 steps, MIPS decided to execute an instruction out of order to waste 1

Instead of wasting 2 steps, MIPS decided to execute an instruction out of order to waste 1

syscall is like an interrupt instruction

syscall is like an interrupt instruction

The CPU switches to kernel mode and drops the entire pipeline

syscall is like an interrupt instruction

The CPU switches to kernel mode and drops the entire pipeline

Everything gets fetched back again after the syscall is done

Handles multiple system things:

• Memory Management

- Memory Management
- Exceptions

- Memory Management
- Exceptions
- Debugging

- Memory Management
- Exceptions
- Debugging
- Cache

Handles multiple system things:

- Memory Management
- Exceptions
- Debugging
- Cache
- Interrupts! (Nice transition)

COP

COP

A Floating Point Unit (FPU)

COP

A Floating Point Unit (FPU) (this thing) 0.3921230137348175048828125

0x3ec8c459

0.3921230137348175048828125

0x3ec8c459

Not IEEE 754 compliant!!

0.3921230137348175048828125

0x3ec8c459

Not IEEE 754 compliant!!

0.3921230137348175048828125

0x3ec8c459

Not IEEE 754 compliant!!

Relevant list of features not implemented:

• NaN

0.3921230137348175048828125

0x3ec8c459

Not IEEE 754 compliant!!

- NaN
- Nearest roundings

0.3921230137348175048828125

0x3ec8c459

Not IEEE 754 compliant!!

- NaN
- Nearest roundings
- +/- ∞

0.3921230137348175048828125

0x3ec8c459

Not IEEE 754 compliant!!

- NaN
- Nearest roundings
- +/- ∞
- Exceptions

0.3921230137348175048828125

0x3ec8c459

Not IEEE 754 compliant!!

- NaN
- Nearest roundings
- +/- ∞
- Exceptions
- Denormalized numbers

0.3921230137348175048828125

0x3ec8c459

Not IEEE 754 compliant!!

Relevant list of features not implemented:

- NaN
- Nearest roundings
- +/- ∞
- Exceptions
- Denormalized numbers

Result: an absolute pain in the ass to emulate

Two of them, composed of two things:

• A Vector Unit (VU)

Two of them, composed of two things:

- A Vector Unit (VU)
- A Vector Interface (VIF)

Two of them, composed of two things:

- A Vector Unit (VU)
- A Vector Interface (VIF)

VPU0 can either work as a COP or as a microprocessor

Two of them, composed of two things:

- A Vector Unit (VU)
- A Vector Interface (VIF)

VPU0 can either work as a COP or as a microprocessor

If it runs in COP(macro) mode, it will act as a superset of instructions for the EE core

Two of them, composed of two things:

- A Vector Unit (VU)
- A Vector Interface (VIF)

VPU0 can either work as a COP or as a microprocessor

If it runs in COP(macro) mode, it will act as a superset of instructions for the EE core

Otherwise it will execute instructions in parallel fed in a microprogram by the EE

VPU1 can transfer directly to the GS memory by using 2 methods:

VPU1 can transfer directly to the GS memory by using 2 methods:

• XGKICK (Path 1)

VPU1 can transfer directly to the GS memory by using 2 methods:

- XGKICK (Path 1)
- VIF1 (Path 2)

VPU1 can transfer directly to the GS memory by using 2 methods:

- XGKICK (Path 1)
- VIF1 (Path 2)

The EE and the VU1 uses a third method to transfer data to the GPU, the GIF

VPU1 can transfer directly to the GS memory by using 2 methods:

- XGKICK (Path 1)
- VIF1 (Path 2)

The EE and the VU1 uses a third method to transfer data to the GPU, the GIF

NB: Path 1 and Path 2 also use the GIF but have higher priority, confusing yet?

VPU - EXAMPLE

VPU - EXAMPLE

The EE sends the model data to the VIF

VPU - EXAMPLE

The EE sends the model data to the VIF

```
1 .align 0
2 ;test.dae mp1 pkt1.obj
3 ;Automatically generated by kh2vif
4 ;kh2vif by GovanifY ~ 2017
5 stcycl 01, 01
7 unpack[r] V4 32, 0, *
8 .int 1, 0, 0, 0
9 .int 36, 4, 54, 56
10 .int 0, 0, 0, 0
11 .int 14, 40, 0, 5
12 .EndUnpack
13
14 stcycl 01, 01
15
16 unpack[r] V2 16, 4, *
17 .short 2048, 0
18 .short 1024, 1024
19 .short 1024, 0
20 .short 1024, 3071
21 .short 2048, 2048
22 .short 2048, 3071
23 .short 3071, 2048
```

VPU - EXAMPLE

The EE sends the model data to the VIF

```
1 .align 0
2 ;test.dae mp1 pkt1.obj
3 ;Automatically generated by kh2vif
  ;kh2vif by GovanifY ~ 2017
5 stcycl 01, 01
7 unpack[r] V4 32, 0, *
8 .int 1, 0, 0, 0
9 .int 36, 4, 54, 56
10 .int 0, 0, 0, 0
11 .int 14, 40, 0, 5
12 .EndUnpack
13
14 stcycl 01, 01
15
16 unpack[r] V2 16, 4, *
17 .short 2048, 0
18 .short 1024, 1024
19 .short 1024, 0
20 .short 1024, 3071
21 .short 2048, 2048
22 .short 2048, 3071
23 .short 3071, 2048
```

The VIF1 executes the unpack commands and writes the data to its memory

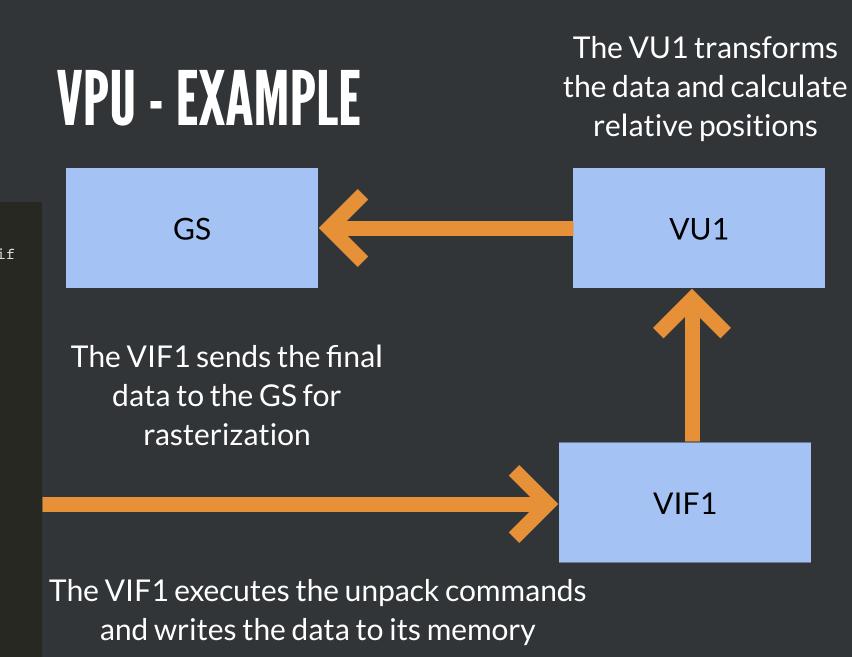
VIF1

The EE sends the model data to the VIF

1 .align 0 2 ;test.dae mp1 pkt1.obj 3 ;Automatically generated by kh2vif ;kh2vif by GovanifY ~ 2017 5 stcycl 01, 01 unpack[r] V4 32, 0, * 8 .int 1, 0, 0, 0 9 .int 36, 4, 54, 56 10 .int 0, 0, 0, 0 11 .int 14, 40, 0, 5 12 .EndUnpack 13 14 stcycl 01, 01 15 16 unpack[r] V2 16, 4, * 17 .short 2048, 0 18 .short 1024, 1024 19 .short 1024, 0 20 .short 1024, 3071 21 .short 2048, 2048 22 .short 2048, 3071 23 .short 3071, 2048

VPU - EXAMPLE

The VU1 transforms the data and calculate relative positions


VU1

VIF1

The VIF1 executes the unpack commands and writes the data to its memory

The EE sends the model data to the VIF

1 .align 0 2 ;test.dae mp1 pkt1.obj 3 ;Automatically generated by kh2vif ;kh2vif by GovanifY ~ 2017 5 stcycl 01, 01 unpack[r] V4 32, 0, * 8 .int 1, 0, 0, 0 9 .int 36, 4, 54, 56 10 .int 0, 0, 0, 0 11 .int 14, 40, 0, 5 12 .EndUnpack 13 14 stcycl 01, 01 15 16 unpack[r] V2 16, 4, * 17 .short 2048, 0 18 .short 1024, 1024 19 .short 1024, 0 20 .short 1024, 3071 21 .short 2048, 2048 22 .short 2048, 3071 23 .short 3071, 2048

Based on the PS1 SPU, but with 2 cores!

Based on the PS1 SPU, but with 2 cores!

Based on the PS1 SPU, but with 2 cores!

Has customizable IRQ!!

Based on the PS1 SPU, but with 2 cores!

Has customizable IRQ!!

Games use them as highly precise interrupts by setting an IRQ at a write-back address used during the mixing stage

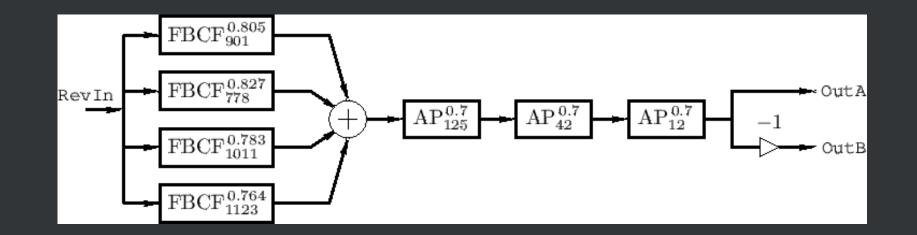
Based on the PS1 SPU, but with 2 cores!

Has customizable IRQ!!

Games use them as highly precise interrupts by setting an IRQ at a write-back address used during the mixing stage The mixer has a sample rate of 48kHZ in PS2 mode, 44.1 in PS1 compatible mode

Also has a Schroeder Reverberator!

Uses 4 parallel comb filters in a rotating buffer


Also has a Schroeder Reverberator!

Uses 4 parallel comb filters in a rotating buffer Adds gain, then mixes back with the original input, rewriting the rotating buffer in the process

Also has a Schroeder Reverberator!

Uses 4 parallel comb filters in a rotating buffer Adds gain, then mixes back with the original input, rewriting the rotating buffer in the process

WHAT IS THE IOP

Good question! It's a MIPS-based processor...

Good question! It's a MIPS-based processor... ... or PowerPC.

Good question! It's a MIPS-based processor... ... or PowerPC.

wait...WHAT?

Good question! It's a MIPS-based processor... ... or PowerPC.

wait...WHAT?

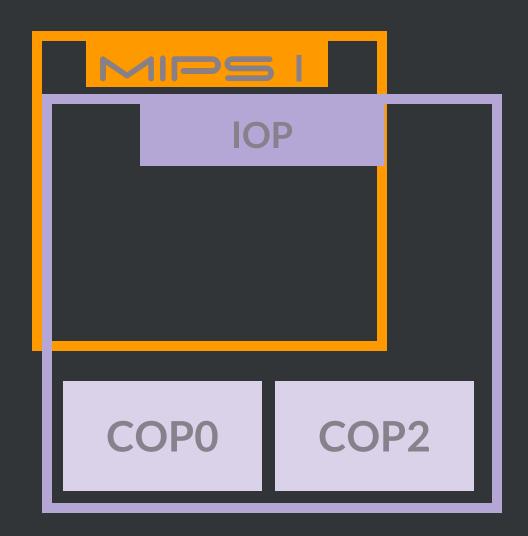
... Let's ignore that for now.

... Let's ignore that for now.

WHAT IS THE IOP

Good question! It's a MIPS-based processor... ... Let's ignore that for now.

It is the PS1 CPU, just repurposed in order to handle all the I/O, devices and drivers in the PS2.


WHAT IS THE IOP

Good question! It's a MIPS-based processor... ... Let's ignore that for now.

It is the PS1 CPU, just repurposed in order to handle all the I/O, devices and drivers in the PS2.

The EE and the IOP communicate through the Subsystem Interface (SIF).

WHAT IS THE IOP

WHAT IS THE IOP

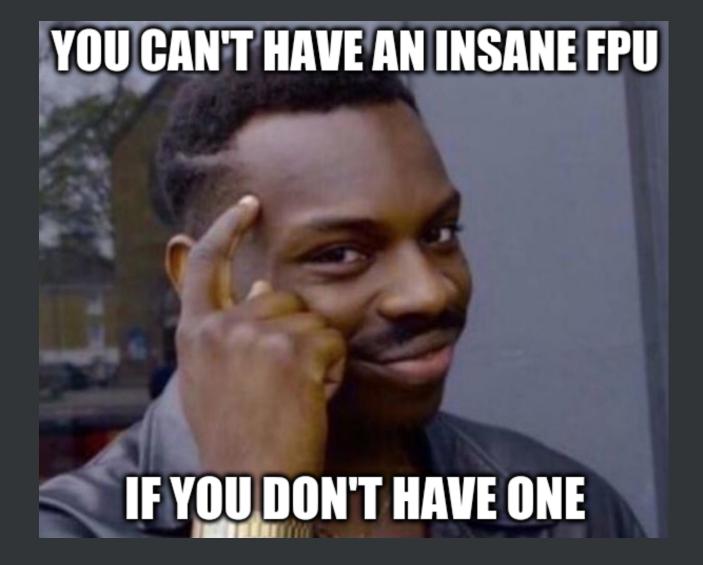
A MIPS I "compatible" CPUs with 2 COP

A MIPS I "compatible" CPUs with 2 COP

• COP0: System Management

A MIPS I "compatible" CPUs with 2 COP

- COP0: System Management
- COP2: Geometry Transformation Engine (GTE)


A MIPS I "compatible" CPUs with 2 COP

- COPO: System Management
- COP1: ???
- COP2: Geometry Transformation Engine (GTE)

A MIPS I "compatible" CPUs with 2 COP

- COP0: System Management
- COP1:???
- COP2: Geometry Transformation Engine (GTE)

Sony doesn't know how to count

ONE LAST THING

Dynamic Memory Allocation and the Heap

Memory allocation functions allow the programmer to increase the depth and variety of the game world whilst making the best use of the PlayStation's relatively modest memory size.

In C, memory allocation is achieved using the *malloc* and *free* functions. Unfortunately there have been several problems with these functions on PlayStation.

The standard *malloc/free* combination supplied as part of *libc* fragments memory due to a bug in the free function. This means that large chunks on the machine memory become inaccessible even though they are not holding any valid data.

ONE LAST THING

Dynamic Memory Allocation and the Heap

Memory allocation functions allow the programmer to increase the depth and variety of the game world whilst making the best use of the PlayStation's relatively modest memory size.

In C, memory allocation is achieved using the *malloc* and *free* functions. Unfortunately there have been several problems with these functions on PlayStation.

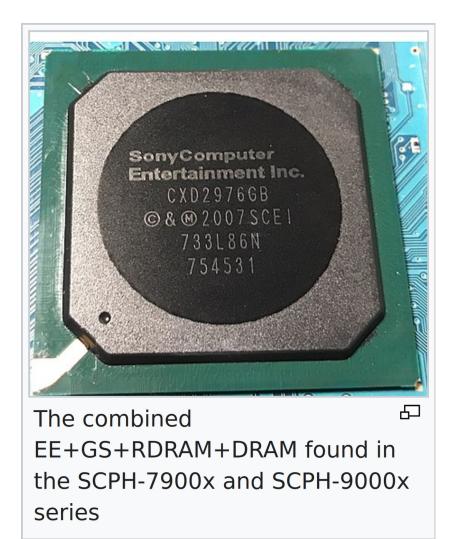
The standard *malloc/free* combination supplied as part of *libc* fragments memory due to a bug in the free function. This means that large chunks on the machine memory become inaccessible even though they are not holding any valid data.

PS1: Bring out your own f---ing chip and system libraries

Meet PS2 Slim hardware!

Slim, right?

Meet PS2 Slim hardware!


Slim, right?

Wanna know why?

Meet PS2 Slim hardware!

Meet deckard!

Meet deckard!

A PowerPC based replacement for the IOP

Meet deckard!

A PowerPC based replacement for the IOP

Emulates PS1 features through software

Meet deckard!

A PowerPC based replacement for the IOP

Emulates PS1 features through software

Fortunately we don't care about it, we are writing an emulator, not trying to emulate the emulator emulating the console :D

COPY PROTECTION

COPY PROTECTION

About time we talk about it

About time we talk about it Essentially a mod of PS1's copy protection

COPY PROTECTION

About time we talk about it Essentially a mod of PS1's copy protection The PS1 replaced CD's ATIP (which is a sinusoidal constant of ~22kHZ) by their own region specific constant

COPY PROTECTION

About time we talk about it Essentially a mod of PS1's copy protection

The PS1 replaced CD's ATIP (which is a sinusoidal constant of ~22kHZ) by their own region specific constant

The ATIP is normally used by players to synchronize their laser's timing

COPY PROTECTION

About time we talk about it Essentially a mod of PS1's copy protection

The PS1 replaced CD's ATIP (which is a sinusoidal constant of ~22kHZ) by their own region specific constant

The ATIP is normally used by players to synchronize their laser's timing

Data can also be stored by modulating the ATIP +/- 1kHZ!

The PS2 instead stores the Title ID of the disc in it

The PS2 instead stores the Title ID of the disc in it

Mechacon then derives an encryption key out of the Title ID which will be used to decrypt and verify the disc

COPY PROTECTION

The PS2 instead stores the Title ID of the disc in it

Mechacon then derives an encryption key out of the Title ID which will be used to decrypt and verify the disc

It will then proceed to decrypt the "PlayStation 2" logo you see at each boot once sent to it

COPY PROTECTION

The PS2 instead stores the Title ID of the disc in it

Mechacon then derives an encryption key out of the Title ID which will be used to decrypt and verify the disc

It will then proceed to decrypt the "PlayStation 2" logo you see at each boot once sent to it

...But we can completely ignore this by skipping the verification logic in the BIOS!

Sony tries to make this harder by making it harder to power on the mechacon

COPY PROTECTION

Sony tries to make this harder by making it harder to power on the mechacon

...forgetting you could just dump the BIOS out of your flash chip and reverse engineer it

COPY PROTECTION

Sony tries to make this harder by making it harder to power on the mechacon

...forgetting you could just dump the BIOS out of your flash chip and reverse engineer it

.....and that the bootloader verifies the integrity of your BIOS with a simple CRC which is prone to collisions

COPY PROTECTION

Sony tries to make this harder by making it harder to power on the mechacon

...forgetting you could just dump the BIOS out of your flash chip and reverse engineer it

.....and that the bootloader verifies the integrity of your BIOS with a simple CRC which is prone to collisions

The mechacon is essentially a security processor that you can completely ignore and useless in functionality

```
1 void mechaconAuth()
2 {
    int k;
     while (cdvdRead(0x17) != 0x40) {;}
     cdvdWrite(0x17, 0);
10
     cdvdWrite(0x16, 0x80);
    while (cdvdRead(0x16) != 0x80) {;}
11
12
     while (cdvdRead(0x17) != 0x40)
13
14
       cdvdRead(0x18);
15
16
17
     while (cdvdRead(0x17) != 0x40) \{;\}
     cdvdWrite(0x16, 0x81);
18
     while (cdvdRead(0x16) != 0x81) {;}
19
20
     while (cdvdRead(0x17) != 0x40)
21
     {
22
       cdvdRead(0x18);
23
24
25
26
     while (cdvdRead(0x17) != 0x40) {;}
27
     for (k = 0; k < 16; k++)
28
     {
29
       cdvdWrite(0x17, 0xff);
30
     }
```

while (cdvdRead(0x17) != 0x40) {;}
cdvdWrite(0x16, 0x81);
while (cdvdRead(0x16) != 0x81) {;}
while (cdvdRead(0x17) != 0x40) cdvdWrite(0x16, 0x83); while (cdvdRead(0x16) != 0x83) {;} while (cdvdRead(0x17) != 0x40) { cdvdRead(0x18); } while (cdvdRead(0x17) != 0x40) {;} cdvdHrite(0x16, 0x8f); while (cdvdRead(0x16) != 0x8f) {;} while (cdvdRead(0x17) != 0x40) while (cdvdRead(0x17) != 0x40) {;}
cdvdWrite(0x16, 0x84);
while (cdvdRead(0x16) != 0x84) {;}
while (cdvdRead(0x17) != 0x40) { cdvdRead(0x18); while (cdvdRead(0x17) != 0x40) {;}
cdvdRkrite(0x16, 0x85);
while (cdvdRead(0x16) != 0x85) {;}
while (cdvdRead(0x17) != 0x40)
{
cdvdRead(0x18);
} cdvdWrite(0x16, 0x86); while (cdvdRead(0x16) != 0x86) {;} while (cdvdRead(0x17) != 0x40) { cdvdRead(0x18);

100
cdvdHrite(0x16, 0x87);
102 while (cdvdRead(0x16) != 0x87) {;}
103 while (cdvdRead(0x17) != 0x40)
104
105 cdvdRead(0x18);
106 }

while (cdvdRead(0x16) := 0x88) {;}
while (cdvdRead(0x17) := 0x40)
{
 cdvdRead(0x18);
}

¹¹ while (cdrvdRead(0x17) != 0x4 33 cdrvdHrits(0x17, 0x0B); 34 5 cdrvdHrits(0x16, 0x81); 36 while (cdrvdRead(0x16) != 0x8 77 while (cdrvdRead(0x17) != 0x4 36 f

}
shile (cdvdRead(0x17) := 0x40)
for (k = 0; k < 16; k++)</pre>

cdvdWrite(0x16, 0x82); while (cdvdRead(0x16) = 0x82) while (cdvdRead(0x17) = 0x40) {

56 57 while (cdvdRead(0x17) != 0x4 58 for (k = 0; k < 8; k++) 59 { 60 cdvdWrite(0x17, 0xff);

cdvdWrite(0x16, 0x83);
while (cdvdRead(0x16) != 0x83
while (cdvdRead(0x17) != 0x40
6 {
7 cdvdRead(0x18);

1 while (cdvdRead(0x17) 1= 0x40 2 cdvdRrite(0x16, 0x82); 3 while (cdvdRead(0x16) 1= 0x82 4 while (cdvdRead(0x17) 1= 0x40 5 {

while (cdrdRead(0x17) != 0x40) cdrdWrite(0x16, 0x84); while (cdrdRead(0x17) != 0x84) while (cdrdRead(0x17) != 0x40) { cdrdRead(0x18);

shile (cdrdRead(0x17) != 0x40
cdrdWrite(0x16, 0x85);
d while (cdrdRead(0x16) != 0x82
cdrdRead(0x17) != 0x40
cdrdRead(0x17) != 0x40
cdrdRead(0x18);

while (cdvdRead(0x17) != 0x40)
for (k = 0; k < 16; k++)
{
 cdvdHrite(0x17, 0xff);
</pre>

cdvdwrite(0x16, 0x06); while (cdvdRead(0x16) := 0x86) while (cdvdRead(0x17) := 0x40) { cdvdRead(0x18);

111
112 while (cdvdRead(0x17) := 0;
113 for (k = 0; k < 0; k++)
114 {
115 cdvdWrite(0x17, 0xff);
</pre>

118 cdmdHrite(0x16, 0x87);
119 while (cdwdRead(0x16) != 0x
120 while (cdwdRead(0x17) != 0x
121 {
122 cdwdRead(0x18);
123 cdwdRead(0x18);
123 cdwdRead(0x18);
124 cdwdRead(0x18);
125 cdwdRead(0x18);
125

126 while (cdrdRead(0x17) != 0x4 127 cdrdHrite(0x16, 0x85); 128 while (cdrdRead(0x16) != 0x4 129 while (cdrdRead(0x17) != 0x4 130 { 131 cdrdRead(0x18);

5 while (cdvdRead(0x17) i= 0x40 16 cdvdRrite(0x16, 0x88); 7 while (cdvdRead(0x18) i= 0x88 18 while (cdvdRead(0x17) i= 0x40 10 { 10 cdvdRead(0x18); 11 }

cdvdRead(0x18): while (cdvdRead(0x17) != 0x40) {;} cdvdWrite(0x16, 0x81); while (cdvdRead(0x16) != 0x81) {;} while (cdvdRead(0x17) != 0x40) cdvdRead(0x18): cdvdRead(0x18): while (cdvdRead(0x17) != 0x40) {;} cdvdWrite(0x16, 0x8f); while (cdvdRead(0x16) != 0x8f) {;} while (cdvdRead(0x17) != 0x40) cdvdRead(0x18): while (cdvdRead(0x17) != 0x40) {;} cdvdWrite(0x16, 0x84); while (cdvdRead(0x16) != 0x84) {;} while (cdvdRead(0x17) != 0x40) cdvdRead(0x18): while (cdvdRead(0x17) != 0x40) {;} cdvdWrite(0x16, 0x85); while (cdvdRead(0x16) != 0x85) {;} while (cdvdRead(0x17) != 0x40) cdvdRead(0x18):

Good thing we can just ignore it when emulating!

ead(0x17) != 0x40) {:} ile (cdvdRead(0x17) != 0x40) {;}
vdWrite(0x16, 0x81);
ile (cdvdRead(0x16) != 0x81) {;}
ile (cdvdRead(0x17) != 0x40) cdvdRead(0x18): hile (cdvdRead(0x17) != 0x40) {;}
dvdWrite(0x16, 0x8f);
hile (cdvdRead(0x16) != 0x8f) {;}
hile (cdvdRead(0x17) != 0x40) ile (cdvdRead(0x17) != 0x40) {;}
vdWrite(0x16, 0x84);
ile (cdvdRead(0x16) != 0x84) {;}
ile (cdvdRead(0x17) != 0x40) e (cdvdRead(0x17) != 0x40) {;}
Write(0x16, 0x85);
e (cdvdRead(0x16) != 0x85) {;}
e (cdvdRead(0x17) != 0x40) dvdRead(0x18): cdvdRead(0x18): cmrvdHmad(0x17) 1= 0x40) {;;; sdvdHrite(0x16, 0x88); hile (cdvdRead(0x16) 1= 0x88) {;} ile (cdvdRead(0x17) 1= 0x40) vvdRead(0x17) 1= 0x40)

void mechaconAuth(

Good thing we can just ignore it when emulating!

```
1 case 0x80:
           SetResultSize(1);
           cdvd.mg datatype = 0; //data
           cdvd.Result[0] = 0;
           break;
   case 0x81:
           SetResultSize(1);
           cdvd.mg datatype = 0; //data
           cdvd.Result[0] = 0;
10
11
           break;
12
13
   case 0x82:
14
           SetResultSize(1); //in:16
           cdvd.Result[0] = 0;
15
16
           break;
```

kead(0x17) != 0x40) {;} 2(0X16, 0X81); dvdRead(0x16) != 0x81) {;} mrite(0x16, 0x83); e (cdvdRead(0x16) != 0x83) {;} e (cdvdRead(0x17) != 0x40) cdvdRead(0x17) != 0x40) {;}
write(0x16, 0x8f);
c(cdvdRead(0x16) != 0x8f) {;} e (cdvdRead(0x17) != 0x40) {;}
Write(0x16, 0x84);
e (cdvdRead(0x16) != 0x84) {;}
e (cdvdRead(0x16) != 0x84) {;} cdvdRead(0x17) != 0x40) {;} tte(0x16, 0x85); cdvdRead(0x16) != 0x85) {;} cdvdRead(0x17) != 0x40) dvdWrite(0x17. 0xff): dWrite(0x16, 0x86); le (cdvdRead(0x16) != 0x86) {;} le (cdvdRead(0x17) != 0x40) 0x8f); (0x16) 1= 0x8f) {;' ite(0x16, 0x88); (cdvdRead(0x16) 1= 0x88) {;] (cdvdRead(0x17) 1= 0x40)

Good thing we can just ignore it when emulating!

```
1 case 0x80:
           SetResultSize(1);
           cdvd.mg datatype = 0; //data
           cdvd.Result[0] = 0;
           break;
   case 0x81:
           SetResultSize(1);
           cdvd.mg datatype = 0; //data
           cdvd.Result[0] = 0;
10
11
           break;
12
13
  case 0x82:
14
           SetResultSize(1); //in:16
           cdvd.Result[0] = 0;
15
16
           break;
```

Just have to make sure to return the nice values for the BIOS

Т	// letters = SLES,	numbers =	= 54	4232					
2	<pre>key[0] = ((numbers</pre>	& 0x1F)	<<	3)	((0x0FFFFFFF	&	letters)	>>	25);
3	<pre>key[1] = (numbers</pre>		>>	10)	((0x0FFFFFFF	&	letters)	<<	7);
4	<pre>key[2] = ((numbers</pre>	& 0x3E0)	>>	2)	0x04;				

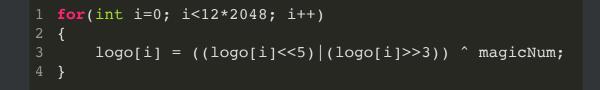
What would be Sony's copy protection without trademark infringement?

1 // letters = SLES, numbers = 54232
2 key[0] = ((numbers & 0x1F) << 3) | ((0x0FFFFFFF & letters) >> 25);
3 key[1] = (numbers >> 10) | ((0x0FFFFFFF & letters) << 7);
4 key[2] = ((numbers & 0x3E0) >> 2) | 0x04;

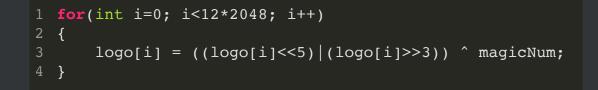
```
1 for(int i=0; i<12*2048; i++)
2 {
3     logo[i] = ((logo[i]<<5)|(logo[i]>>3)) ^ magicNum;
4 }
```


What would be Sony's copy protection without trademark infringement?

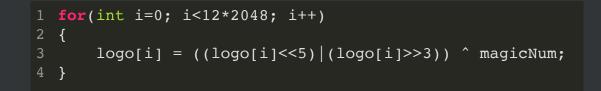
1 // letters = SLES, numbers = 54232
2 key[0] = ((numbers & 0x1F) << 3) | ((0x0FFFFFFF & letters) >> 25);
3 key[1] = (numbers >> 10) | ((0x0FFFFFFF & letters) << 7);
4 key[2] = ((numbers & 0x3E0) >> 2) | 0x04;

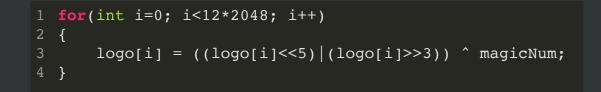

```
1 for(int i=0; i<12*2048; i++)
2 {
3     logo[i] = ((logo[i]<<5)|(logo[i]>>3)) ^ magicNum;
4 }
```

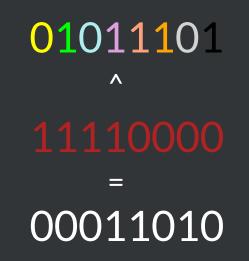
Also differs between regions



11101010


COPY PROTECTION


11101010



The key can be either calculated from the Title ID

The key can be either calculated from the Title ID

...or guessed by reading any 00 encrypted byte

The key can be either calculated from the Title ID ...or guessed by reading any 00 encrypted byte

 $00^{XX} = XX$

The key can be either calculated from the Title ID ...or guessed by reading any 00 encrypted byte

 $00^X = XX$

The first byte of the logo is always 00

The key can be either calculated from the Title ID

... or guessed by reading any 00 encrypted byte

 $00^X X = XX$

The first byte of the logo is always 00

The 12 first sectors are dedicated to this, The next 2 are for Master Drives, and the last 2 are unused

Unhappy of having encrypted content which you can decrypt by simply reading its first byte Sony added a more convoluted protection mechanism called MagicGate to secure its memory cards

Unhappy of having encrypted content which you can decrypt by simply reading its first byte Sony added a more convoluted protection mechanism called MagicGate to secure its memory cards

> You can obviously ask nicely the mechacon to sign and access memory cards for you, but that's not fun

MAGICGATE

MagicGate uses DES

MAGICGATE

MagicGate uses DES

Best public cryptanalysis

DES has been considered insecure right from the start because of the feasilibity of brute-force attacks^[1] Such attacks have been demonstrated in practice (see EFF DES cracker)

MAGICGATE

MagicGate uses DES

Best public cryptanalysis

DES has been considered insecure right from the start because of the feasilibity of brute-force attacks^[1] Such attacks have been demonstrated in practice (see EFF DES cracker)

Oh boy

MAGICGATE

MagicGate uses 3DES

Best public cryptanalysis

DES has been considered insecure right from the start because of the feasilibity of brute-force attacks^[1] Such attacks have been demonstrated in practice (see EFF DES cracker)

Oh boy

MAGICGATE

MagicGate uses 3DES

Best public cryptanalysis

Lucks: 2³² known plaintexts, 2¹¹³ operations including 2⁹⁰ DES encryptions, 2⁸⁸ memory; Biham: find one of 2²⁸ target keys with a handful of chosen plaintexts per key and 2⁸⁴ encryptions

Oh boy

MAGICGATE

MagicGate uses 3DES

Best public cryptanalysis

Lucks: 2³² known plaintexts, 2¹¹³ operations including 2⁹⁰ DES encryptions, 2⁸⁸ memory; Biham: find one of 2²⁸ target keys with a handful of chosen plaintexts per key and 2⁸⁴ encryptions

...but with only 2 keys of security

Their 3DES implementation changes the key schedule slightly

Their 3DES implementation changes the key schedule slightly They use it in CBC mode as a challenge reply nonce based cryptosystem

1. We ask the memory card for some IV and its identifier

Their 3DES implementation changes the key schedule slightly They use it in CBC mode as a challenge reply nonce based cryptosystem

We ask the memory card for some IV and its identifier
 We derive a unique key based on this

Their 3DES implementation changes the key schedule slightly They use it in CBC mode as a challenge reply nonce based cryptosystem

We ask the memory card for some IV and its identifier
 We derive a unique key based on this
 We ask the memory card for a nonce it generated

Their 3DES implementation changes the key schedule slightly They use it in CBC mode as a challenge reply nonce based cryptosystem

We ask the memory card for some IV and its identifier
 We derive a unique key based on this
 We ask the memory card for a nonce it generated
 We generate our nonce

- 1. We ask the memory card for some IV and its identifier
- 2. We derive a unique key based on this
- 3. We ask the memory card for a nonce it generated
- 4. We generate our nonce
- 5. We generate a challenge: OurNonce|CardNonce|CardIV encrypted with the Unique Key we calculated and using a built-in IV

- 1. We ask the memory card for some IV and its identifier
- 2. We derive a unique key based on this
- 3. We ask the memory card for a nonce it generated
- 4. We generate our nonce
- 5. We generate a challenge: OurNonce|CardNonce|CardIV encrypted with the Unique Key we calculated and using a built-in IV
- 6. The memory card decrypts our challenge and rebuilds another: CardNonce|MechaNonce|SessionKey, using the IV of step 5

- 1. We ask the memory card for some IV and its identifier
- 2. We derive a unique key based on this
- 3. We ask the memory card for a nonce it generated
- 4. We generate our nonce
- 5. We generate a challenge: OurNonce|CardNonce|CardIV encrypted with the Unique Key we calculated and using a built-in IV
- 6. The memory card decrypts our challenge and rebuilds another: CardNonce|MechaNonce|SessionKey, using the IV of step 5
- 7. The SessionKey will now be used as a Key Encryption Key

This implementation has multiple issues:

• We can pull off chosen plaintext attacks by MITMing the mechacon and the memory card

MAGICGATE

- We can pull off chosen plaintext attacks by MITMing the mechacon and the memory card
- The IV used for the challenge is baked in and will never change.

MAGICGATE

- We can pull off chosen plaintext attacks by MITMing the mechacon and the memory card
- The IV used for the challenge is baked in and will never change.
- We can force Mechacon to keep reusing the same "unique" encryption key by resending the same CardIV and CardID

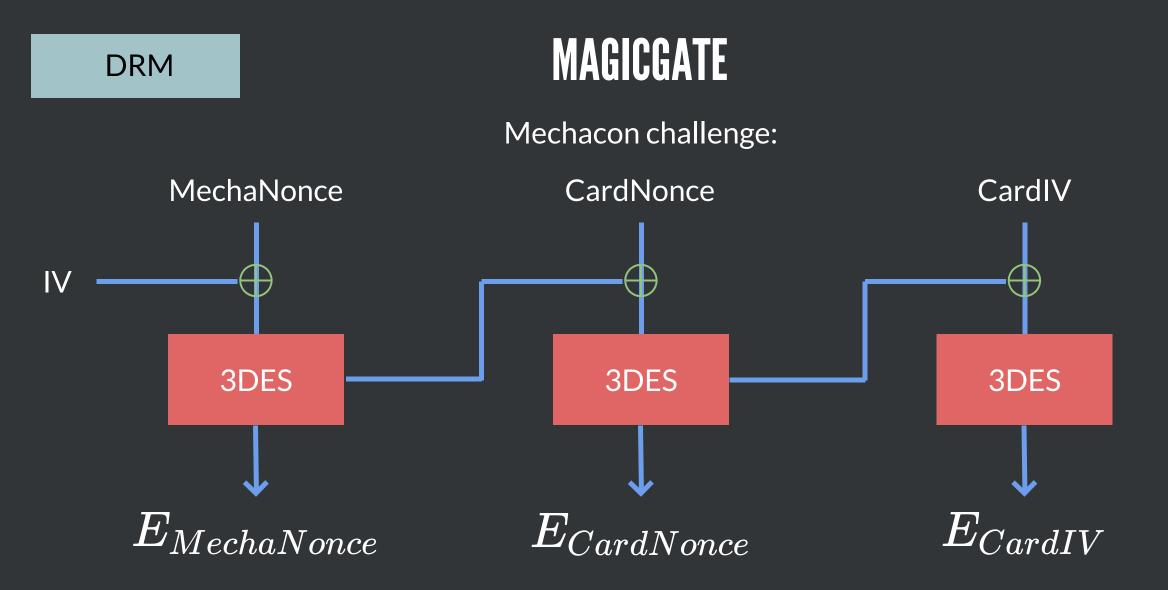
MAGICGATE

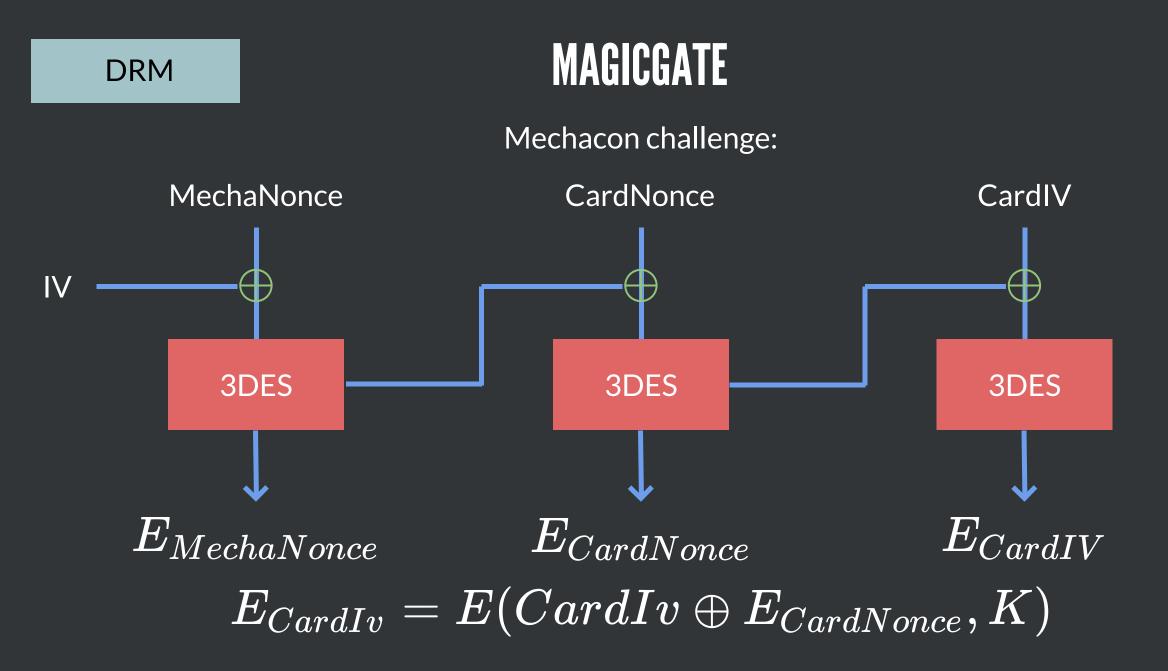
- We can pull off chosen plaintext attacks by MITMing the mechacon and the memory card
- The IV used for the challenge is baked in and will never change.
- We can force Mechacon to keep reusing the same "unique" encryption key by resending the same CardIV and CardID
- We can arbitrarily replace CardID and CardIV in any communication while keeping the same unique key(!)

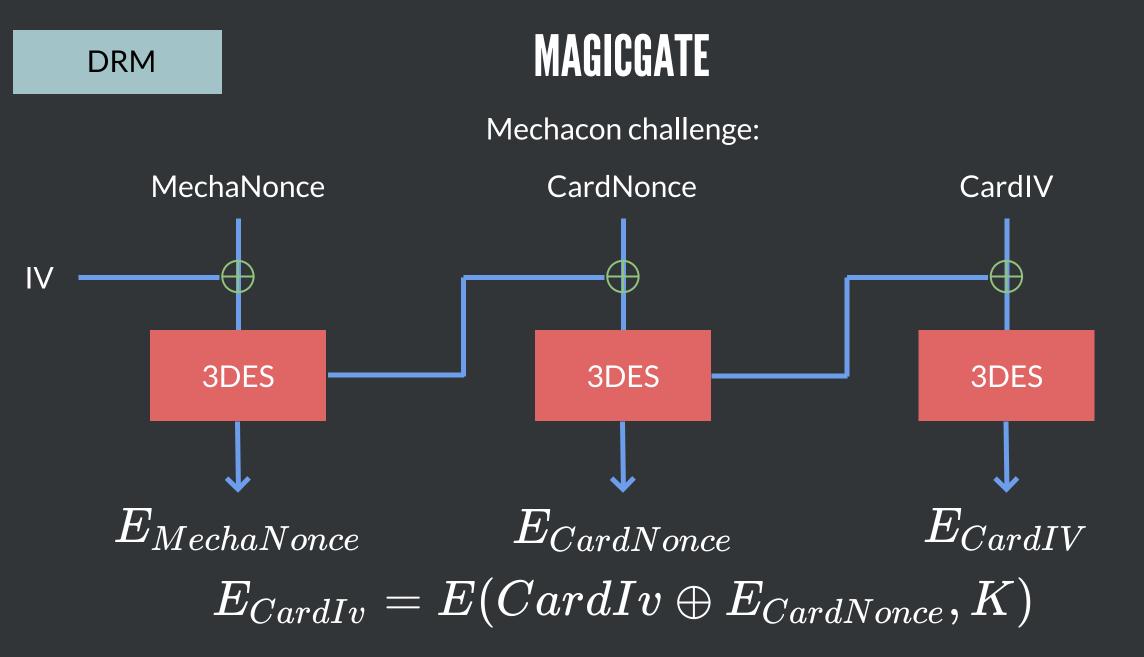
MAGICGATE

- We can pull off chosen plaintext attacks by MITMing the mechacon and the memory card
- The IV used for the challenge is baked in and will never change.
- We can force Mechacon to keep reusing the same "unique" encryption key by resending the same CardIV and CardID
- We can arbitrarily replace CardID and CardIV in any communication while keeping the same unique key(!)
- ...not sensible to replay attacks, unlikely to be an oracle

MAGICGATE


- We can pull off chosen plaintext attacks by MITMing the mechacon and the memory card
- The IV used for the challenge is baked in and will never change.
- We can force Mechacon to keep reusing the same "unique" encryption key by resending the same CardIV and CardID
- We can arbitrarily replace CardID and CardIV in any communication while keeping the same unique key(!)
- ...not sensible to replay attacks, unlikely to be an oracle





Mechacon challenge:

We can always predict everything but K so we can generate infinitely many known plaintext!

We can thus pull off a Linear Cryptanalysis attack on DES with our known plaintext dictionary

We can thus pull off a Linear Cryptanalysis attack on DES with our known plaintext dictionary

Matsui's attack can break it using 2^47 plaintext and was published in 1993. MagicGate was published in 1999.

We can thus pull off a Linear Cryptanalysis attack on DES with our known plaintext dictionary

Matsui's attack can break it using 2^47 plaintext and was published in 1993. MagicGate was published in 1999.

Biryukov et al's attack only requires 2^41 and was released in 2004.

MAGICGATE

We can thus pull off a Linear Cryptanalysis attack on DES with our known plaintext dictionary

Matsui's attack can break it using 2^47 plaintext and was published in 1993. MagicGate was published in 1999.

Biryukov et al's attack only requires 2^41 and was released in 2004.

On Multiple Linear Approximations https://doi.org/10.1007/978-3-540-28628-8_1

hint: sci-hub

MAGICGATE

We can thus pull off a Linear Cryptanalysis attack on DES with our known plaintext dictionary

Matsui's attack can break it using 2^47 plaintext and was published in 1993. MagicGate was published in 1999.

Biryukov et al's attack only requires 2^41 and was released in 2004.

On Multiple Linear Approximations

https://doi.org/10.1007/978-3-540-28628-8_1 hint: sci-hub

But this only applies to DES!

Sony uses 3DES with a 2 key scheme, using the two keys on three encryption steps in this order:

Sony uses 3DES with a 2 key scheme, using the two keys on three encryption steps in this order:

 k_1,k_2,k_1

Sony uses 3DES with a 2 key scheme, using the two keys on three encryption steps in this order:

$$k_1,k_2,k_1$$

An incorrect order could make a meet-in-the-middle attack possible, but unfortunately for us no can do here

Sony uses 3DES with a 2 key scheme, using the two keys on three encryption steps in this order:

$$k_1,k_2,k_1$$

An incorrect order could make a meet-in-the-middle attack possible, but unfortunately for us no can do here

Van Oorschot's attack based on Merkle is a known plaintext attack on 3DES with two triples which is now probably achievable by a dedicated adversary

Sony uses 3DES with a 2 key scheme, using the two keys on three encryption steps in this order:

$$k_1,k_2,k_1$$

An incorrect order could make a meet-in-the-middle attack possible, but unfortunately for us no can do here

Van Oorschot's attack based on Merkle is a known plaintext attack on 3DES with two triples which is now probably achievable by a dedicated adversary

A known-plaintext attack on two-key triple encryption https://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.66.6575

There are a few other details like Content Keys being derived after that, or the Memory Card replacing the Session Key by its own Storage Key once stored, but they are all vulnerable to this same attack.

MAGICGATE

There are a few other details like Content Keys being derived after that, or the Memory Card replacing the Session Key by its own Storage Key once stored, but they are all vulnerable to this same attack.

In the end we can extract all keys from mechacon blindly without using nitric acid! Although I am unsure which is costlier nowadays

MAGICGATE

There are a few other details like Content Keys being derived after that, or the Memory Card replacing the Session Key by its own Storage Key once stored, but they are all vulnerable to this same attack.

In the end we can extract all keys from mechacon blindly without using nitric acid! Although I am unsure which is costlier nowadays

...Or we can reverse engineer Sony's PS2 emulator which also includes the entire MagicGate algorithm to work with memory card adaptors

MAGICGATE

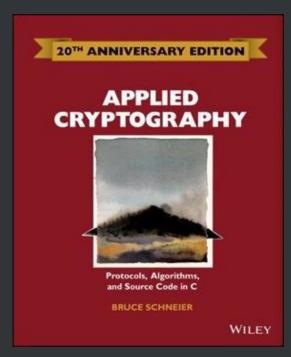
There are a few other details like Content Keys being derived after that, or the Memory Card replacing the Session Key by its own Storage Key once stored, but they are all vulnerable to this same attack.

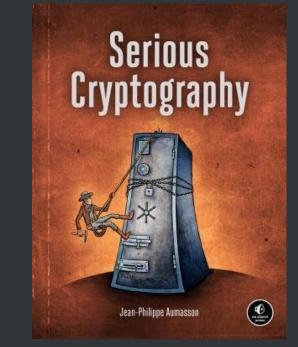
In the end we can extract all keys from mechacon blindly without using nitric acid! Although I am unsure which is costlier nowadays

...Or we can reverse engineer Sony's PS2 emulator which also includes the entire MagicGate algorithm to work with memory card adaptors

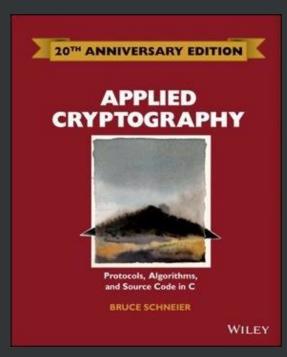


Sony, here are some book recommendations if you want to study cryptography/DES a bit more

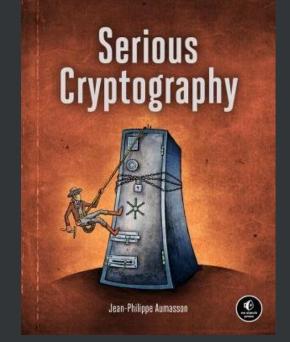

Sony, here are some book recommendations if you want to study cryptography/DES a bit more


Applied Cryptography, Bruce Schneier

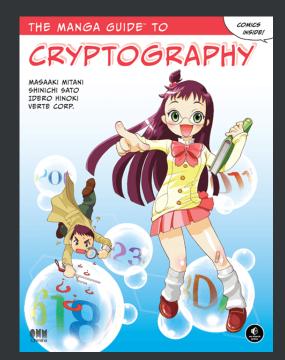
Sony, here are some book recommendations if you want to study cryptography/DES a bit more



Applied Cryptography, Bruce Schneier



Serious Cryptography Jean-Philippe Aumasson

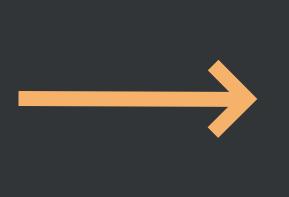

Sony, here are some book recommendations if you want to study cryptography/DES a bit more

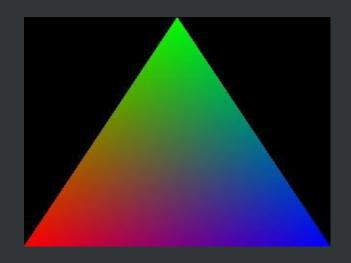
Applied Cryptography, Bruce Schneier

Serious Cryptography Jean-Philippe Aumasson

The Manga Guide to Cryptography, Masaaki, Shinichi, Idero, Verte et al. GS

A rasterizer

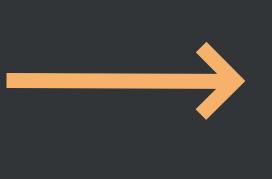

A rasterizer

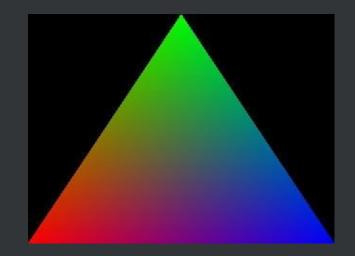

That's it!!!

A rasterizer

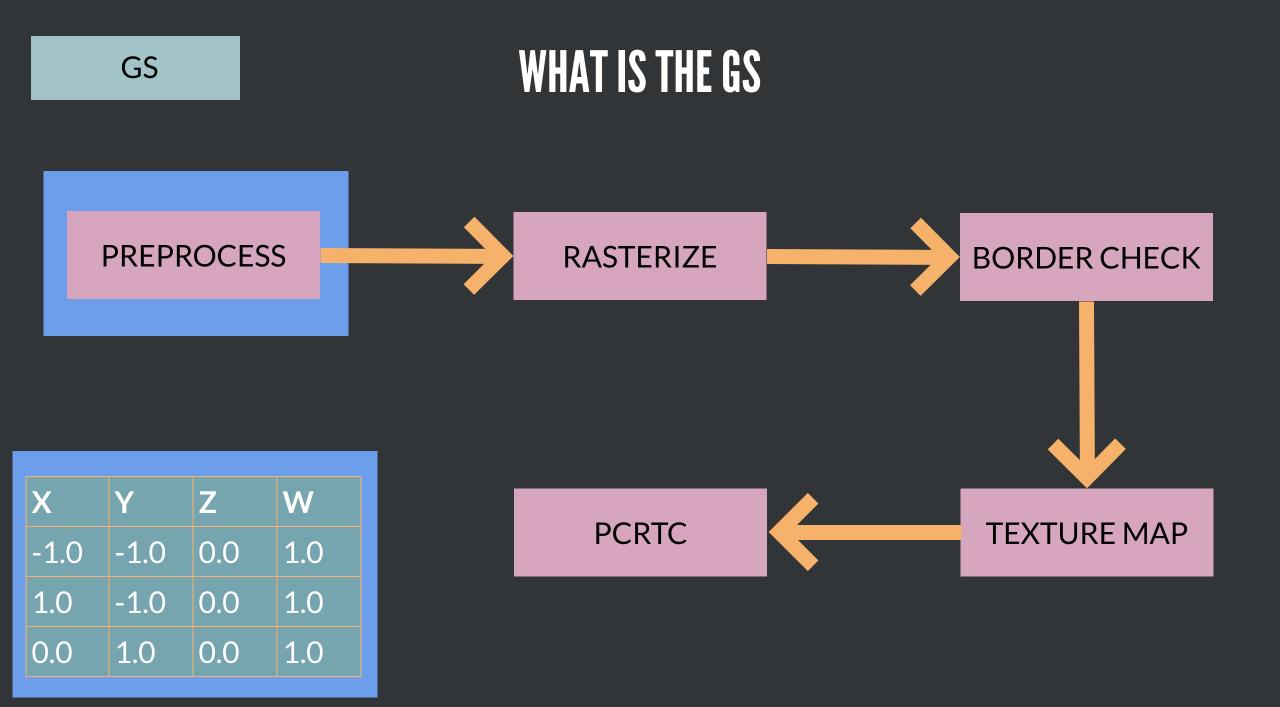
That's it!!!

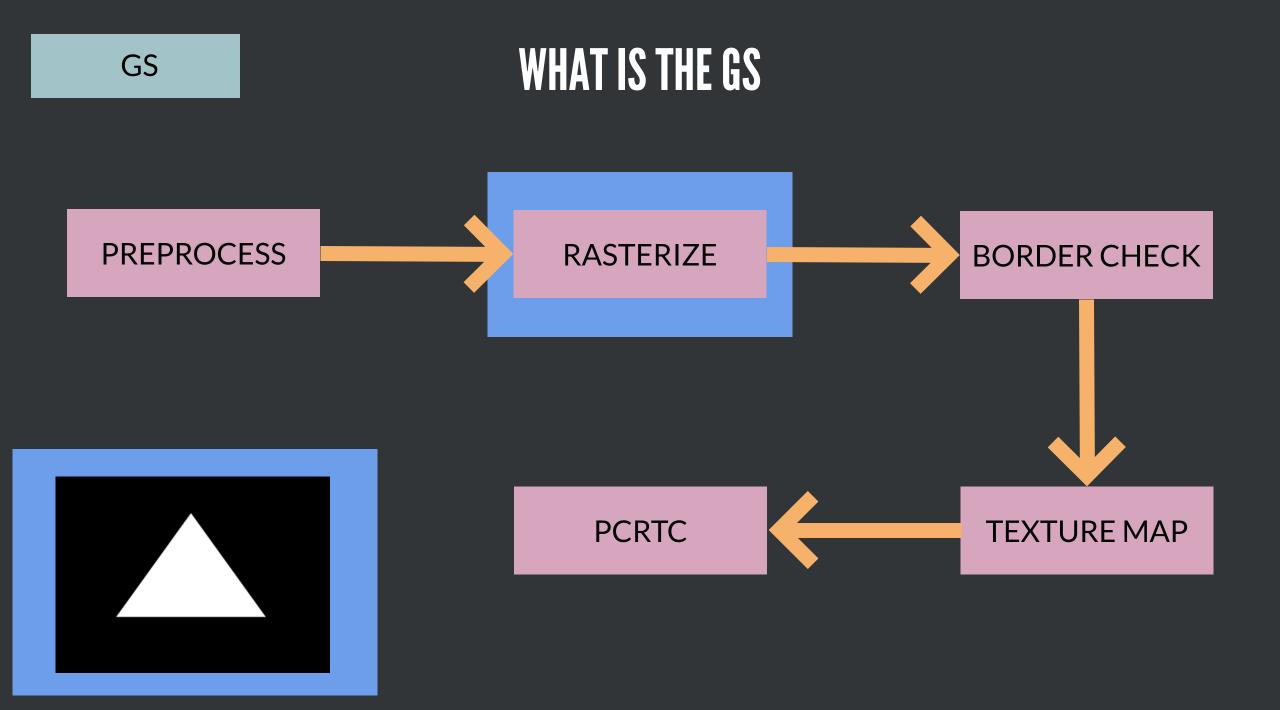
X	Υ	Z	W
-1.0	-1.0	0.0	1.0
1.0	-1.0	0.0	1.0
0.0	1.0	0.0	1.0

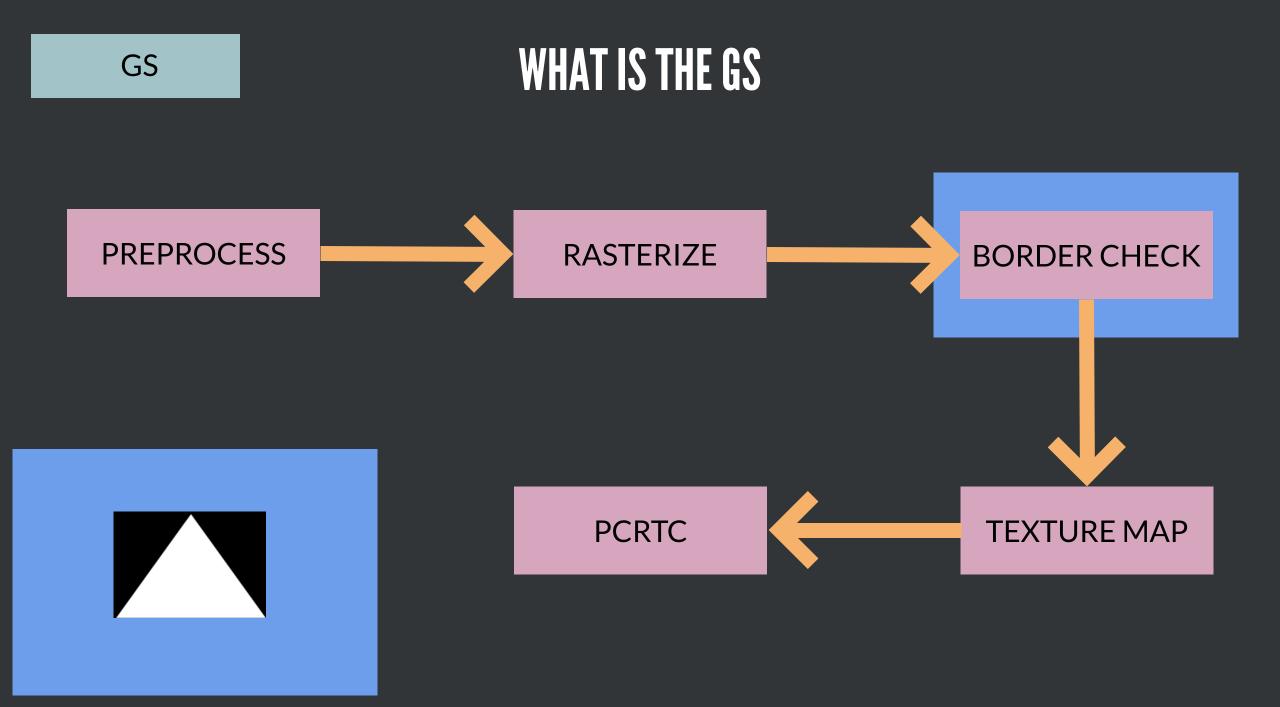


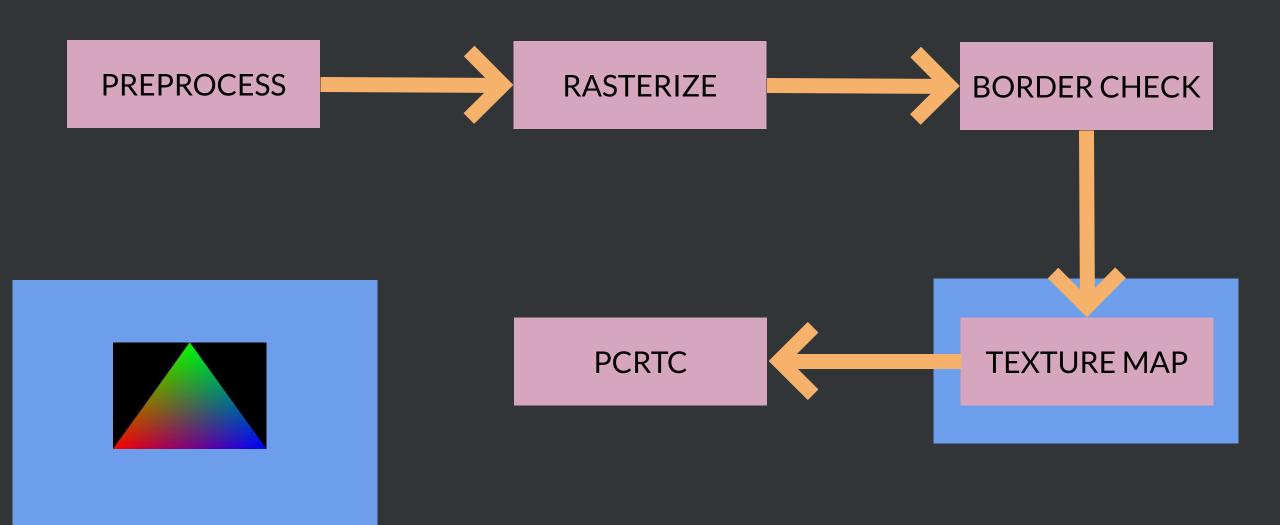


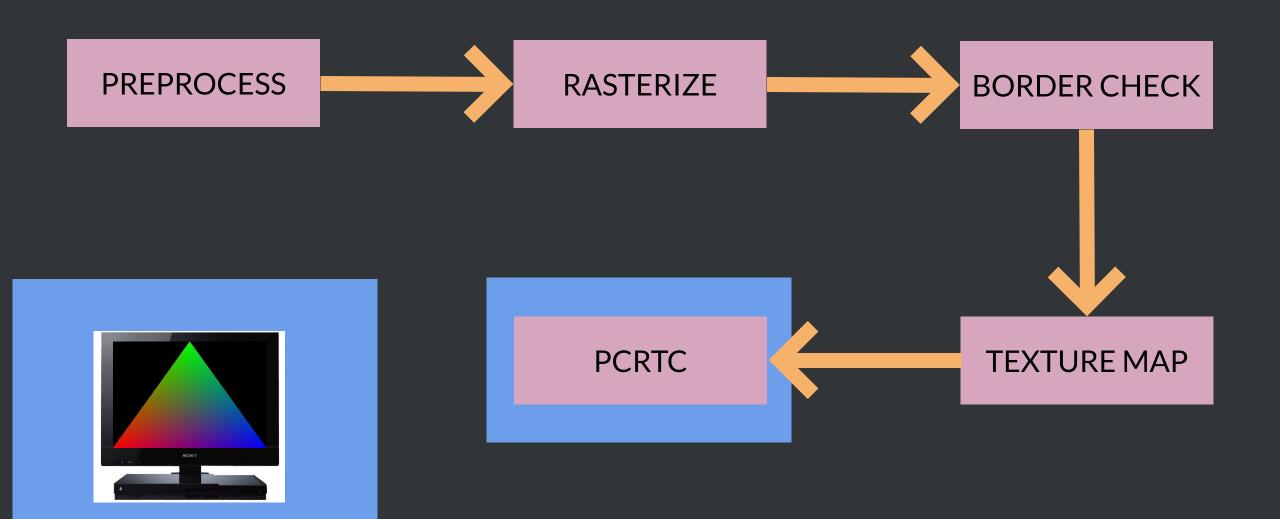
A rasterizer

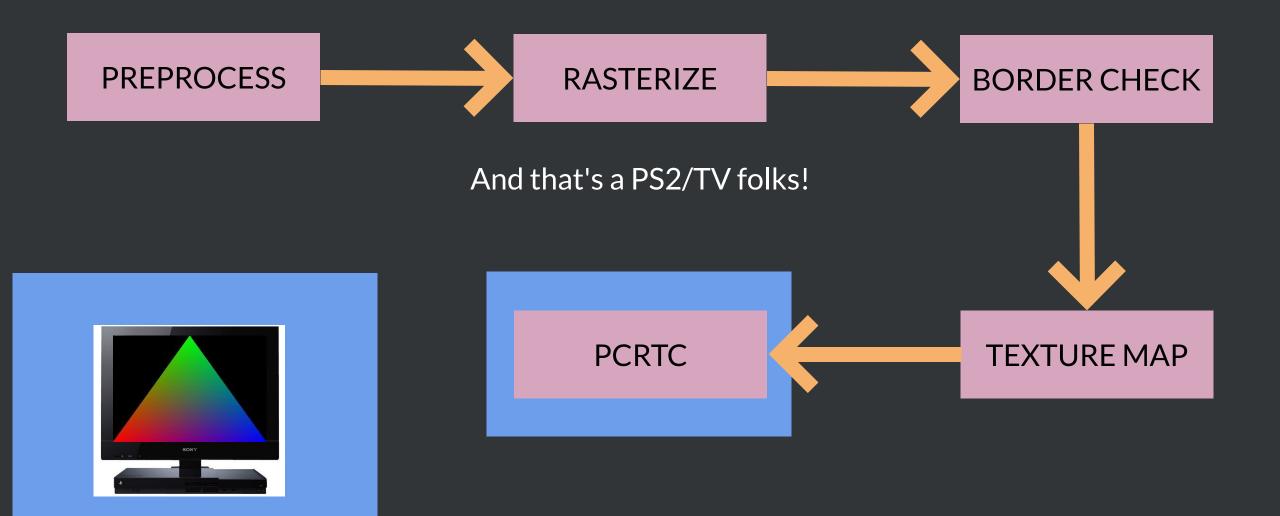

That's it!!!


X	Y	Z	W
-1.0	-1.0	0.0	1.0
1.0	-1.0	0.0	1.0
0.0	1.0	0.0	1.0




Draws Internally into a Framebuffer. A part of the GS called PCRTC then outputs it to your TV





Data is transferred to the GS by using the GIF which is a part of the EE

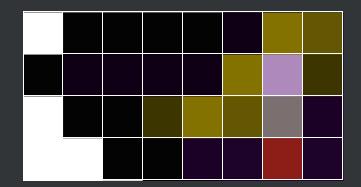
Data is transferred to the GS by using the GIF which is a part of the EE

Textures are transferred in a way that pleases the GS pixel units

Data is transferred to the GS by using the GIF which is a part of the EE

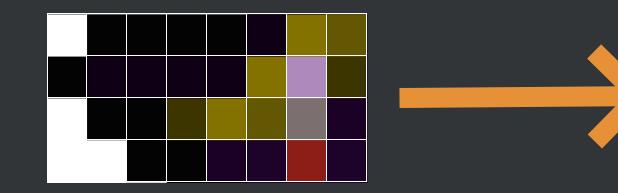
Textures are transferred in a way that pleases the GS pixel units

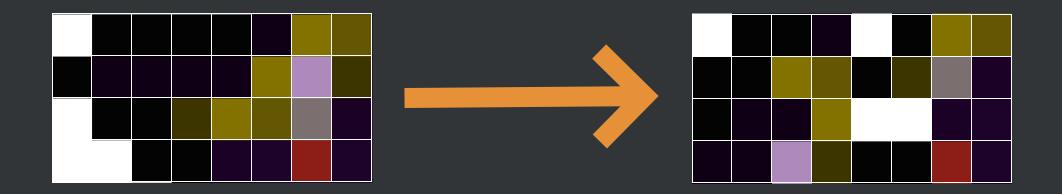
Here is an example with PSMCT32


Data is transferred to the GS by using the GIF which is a part of the EE

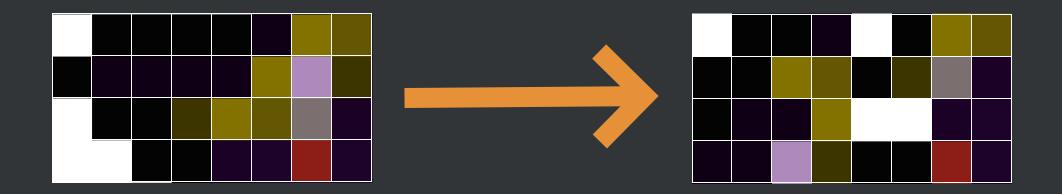
Textures are transferred in a way that pleases the GS pixel units

Here is an example with PSMCT32





0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31



0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31

0	1	4	5	16	17	20	21
2	3	6	7	18	19	22	23
8	9	12	13	24	25	28	29
10	11	14	15	26	27	30	31

4 and 8 bit textures can optionally be indexed and use a palette, which is called in a PS2 world a CLUT (Color LookUp Table)

4 and 8 bit textures can optionally be indexed and use a palette, which is called in a PS2 world a CLUT (Color LookUp Table)

Other notable thing: the Framebuffer doesn't have a fixed size and can be resized to 1080p!

4 and 8 bit textures can optionally be indexed and use a palette, which is called in a PS2 world a CLUT (Color LookUp Table)

Other notable thing: the Framebuffer doesn't have a fixed size and can be resized to 1080p!

But we cannot output it unfortunately...

4 and 8 bit textures can optionally be indexed and use a palette, which is called in a PS2 world a CLUT (Color LookUp Table)

Other notable thing: the Framebuffer doesn't have a fixed size and can be resized to 1080p!

But we cannot output it unfortunately...

...without hacks :D

GamePads are handled by the IOP. Usually GamePad state is read at each VSync by the game logic

OTHER HARDWARE

GamePads are handled by the IOP. Usually GamePad state is read at each VSync by the game logic

GamePad communicate with the SIO2 protocol to the PS2, which is an extension of the original PS1 protocol

OTHER HARDWARE

GamePads are handled by the IOP. Usually GamePad state is read at each VSync by the game logic

GamePad communicate with the SIO2 protocol to the PS2, which is an extension of the original PS1 protocol

The IPU is a secondary processor hidden in the EE without any ISA

OTHER HARDWARE

GamePads are handled by the IOP. Usually GamePad state is read at each VSync by the game logic

GamePad communicate with the SIO2 protocol to the PS2, which is an extension of the original PS1 protocol

The IPU is a secondary processor hidden in the EE without any ISA

You write data, through DMA, send the command and it decodes the stream in real time.

OTHER HARDWARE

Syscon is a separate processor on the motherboard that handles power management related tasks We essentially can forget about it emulation wise

OTHER HARDWARE

Syscon is a separate processor on the motherboard that handles power management related tasks We essentially can forget about it emulation wise

The CDVD subsystem is essentially composed of 3 parts: the laser, a DSP to decode the laser signals and mechacon to ensure DRM

OTHER HARDWARE

Syscon is a separate processor on the motherboard that handles power management related tasks We essentially can forget about it emulation wise

The CDVD subsystem is essentially composed of 3 parts: the laser, a DSP to decode the laser signals and mechacon to ensure DRM

The BIOS also has the infamous CSS algorithm to decode DVDs, this is handled by the IOP

USB and IEEE 1394 are connected to IOP's DMA access

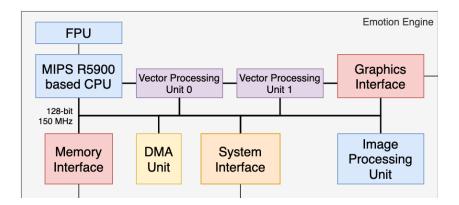
USB and IEEE 1394 are connected to IOP's DMA access

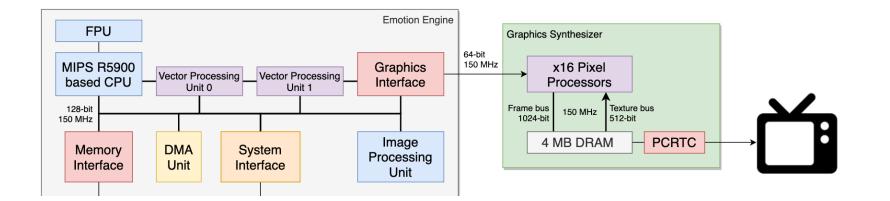
The protocols are game specific.

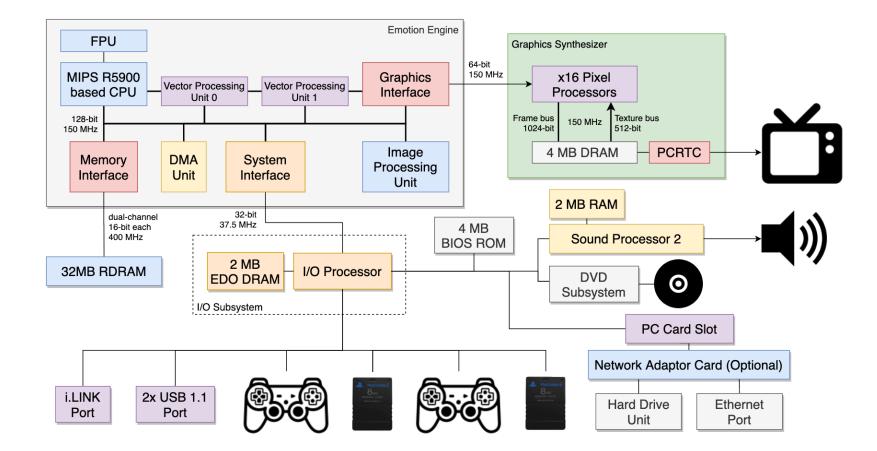
USB and IEEE 1394 are connected to IOP's DMA access

The protocols are game specific.

The SSBUS is essentially the DMA core of the PS2. The EE, IOP, DEV9, CDVD, etc... are all connected to it.

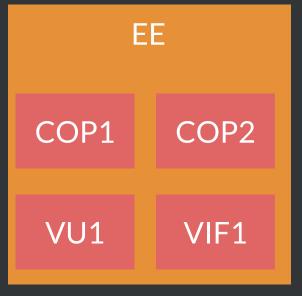


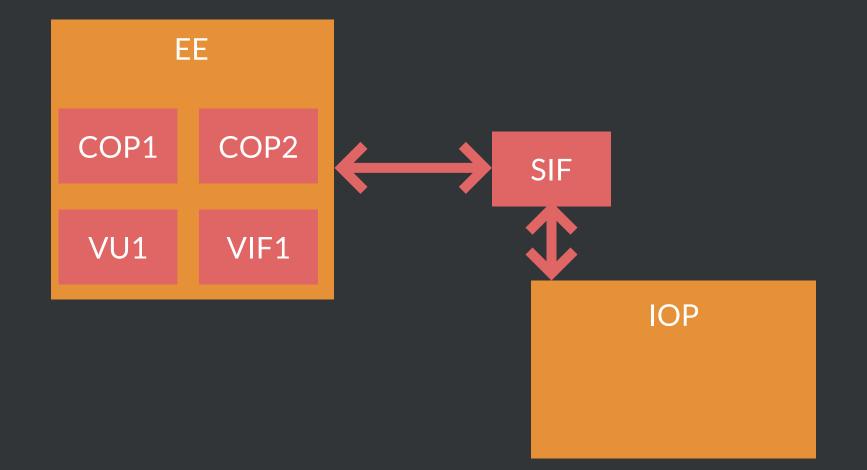

USB and IEEE 1394 are connected to IOP's DMA access

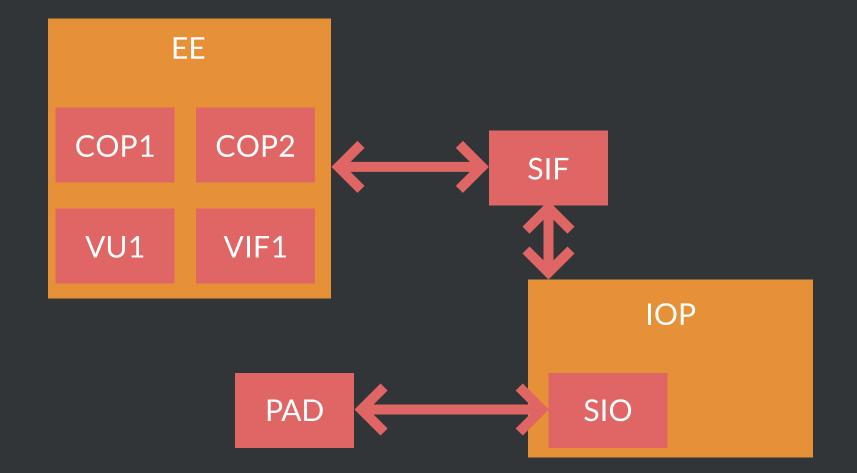

The protocols are game specific.

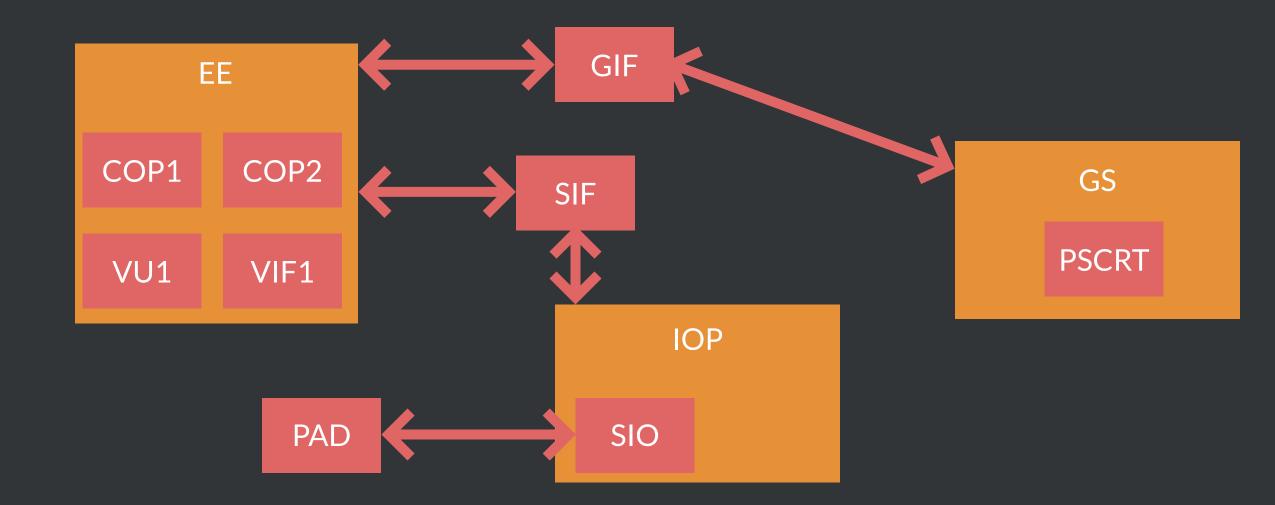
The SSBUS is essentially the DMA core of the PS2. The EE, IOP, DEV9, CDVD, etc... are all connected to it.

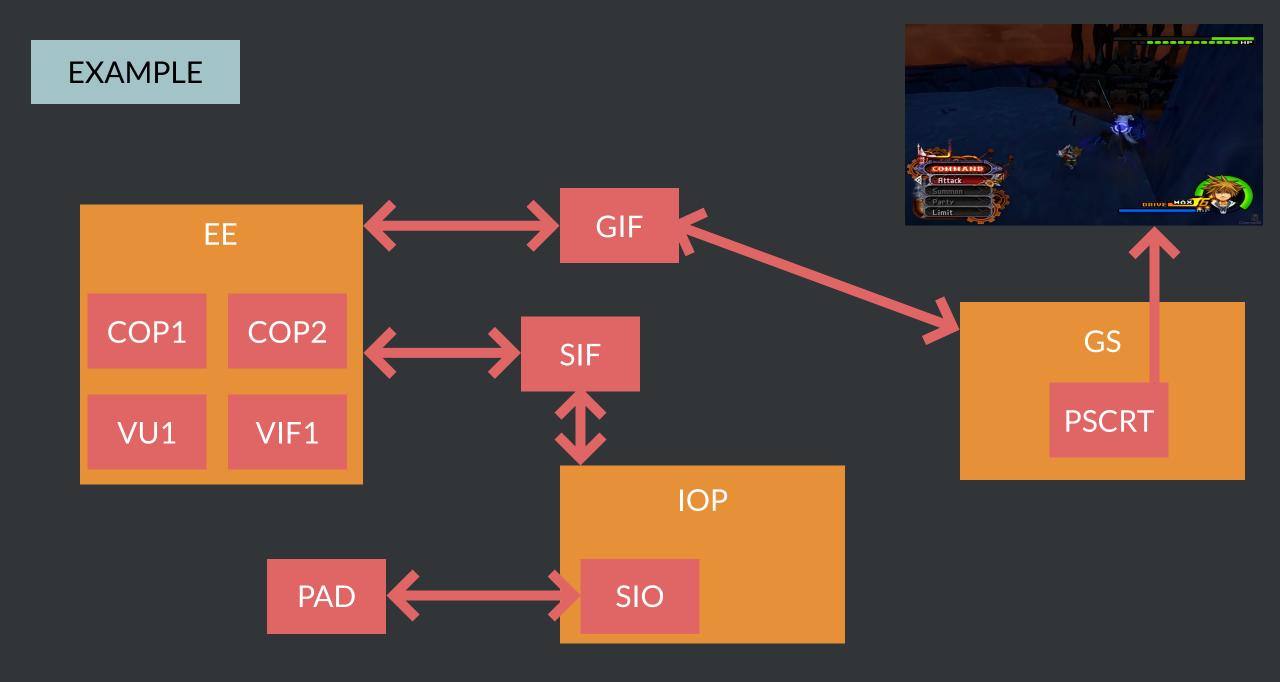
DEV9 is a PCMCIA-like device addressed through DMA. Protocols are game specific but are mostly centered around the ethernet and HDD adapter.

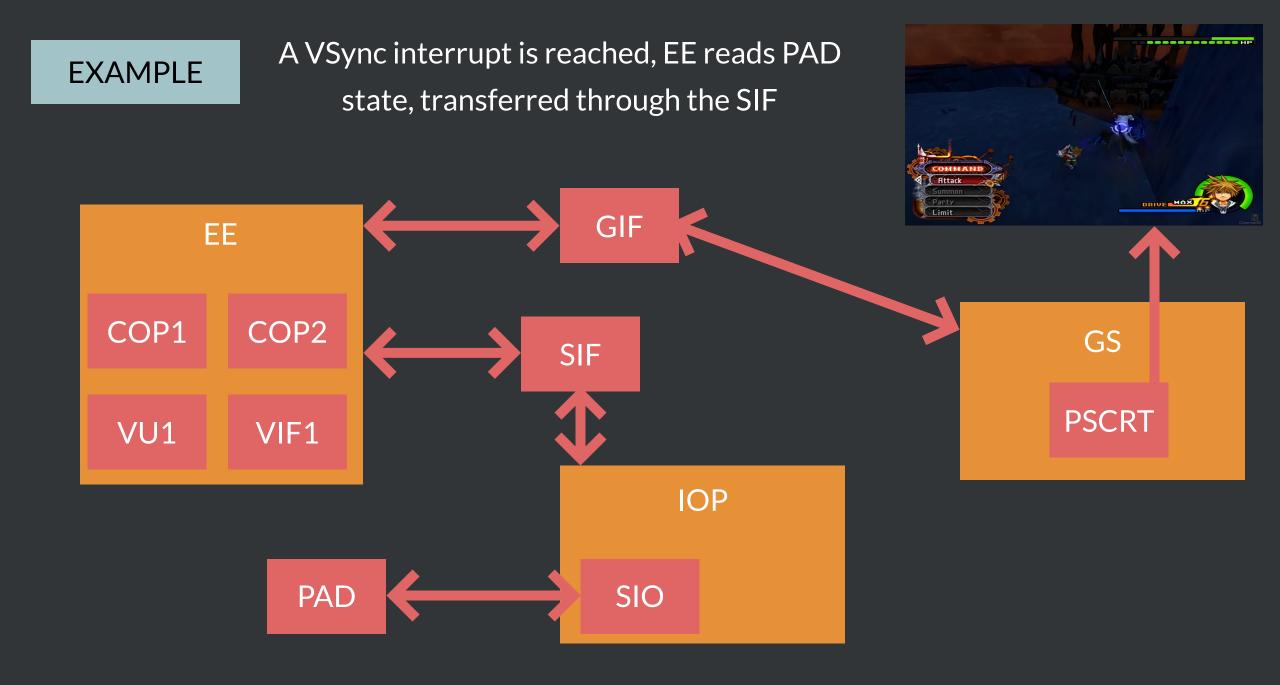


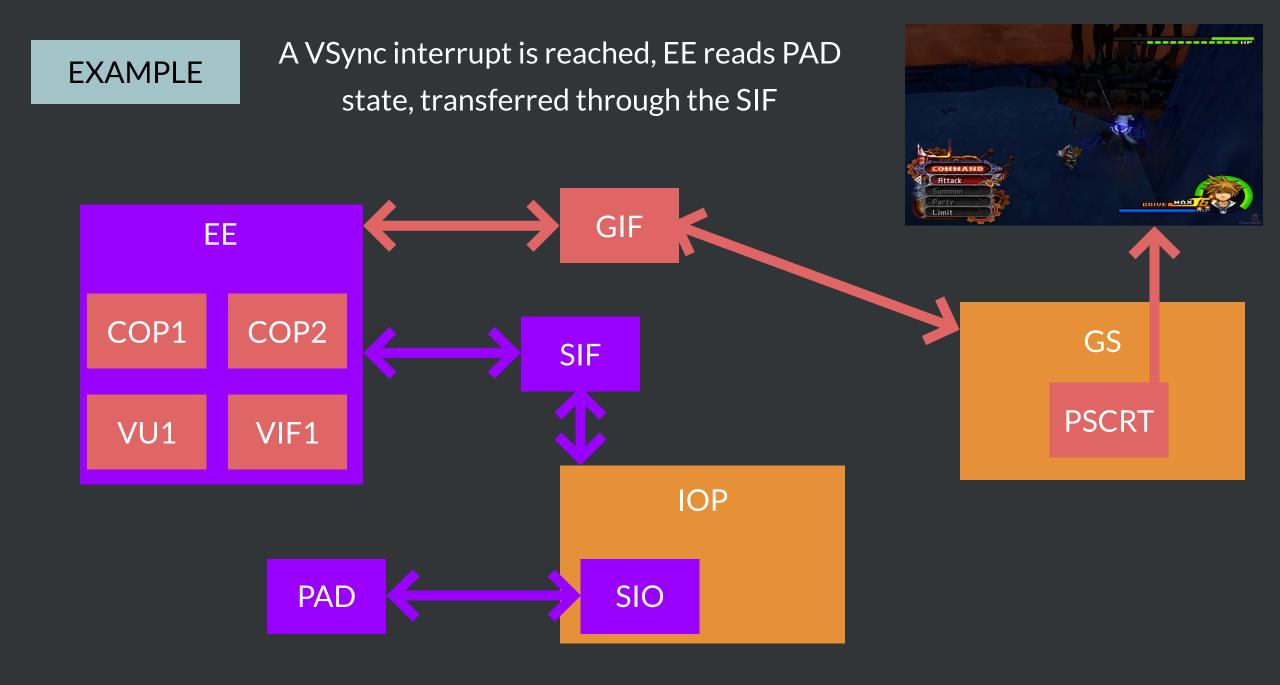


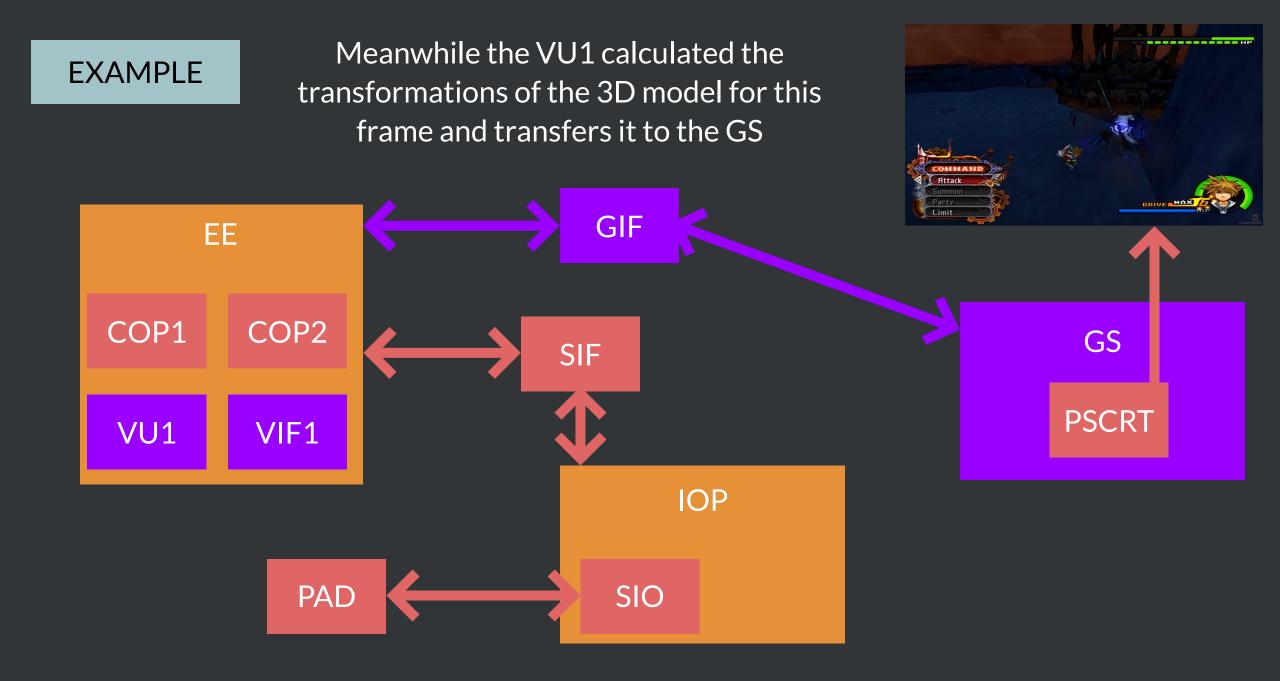


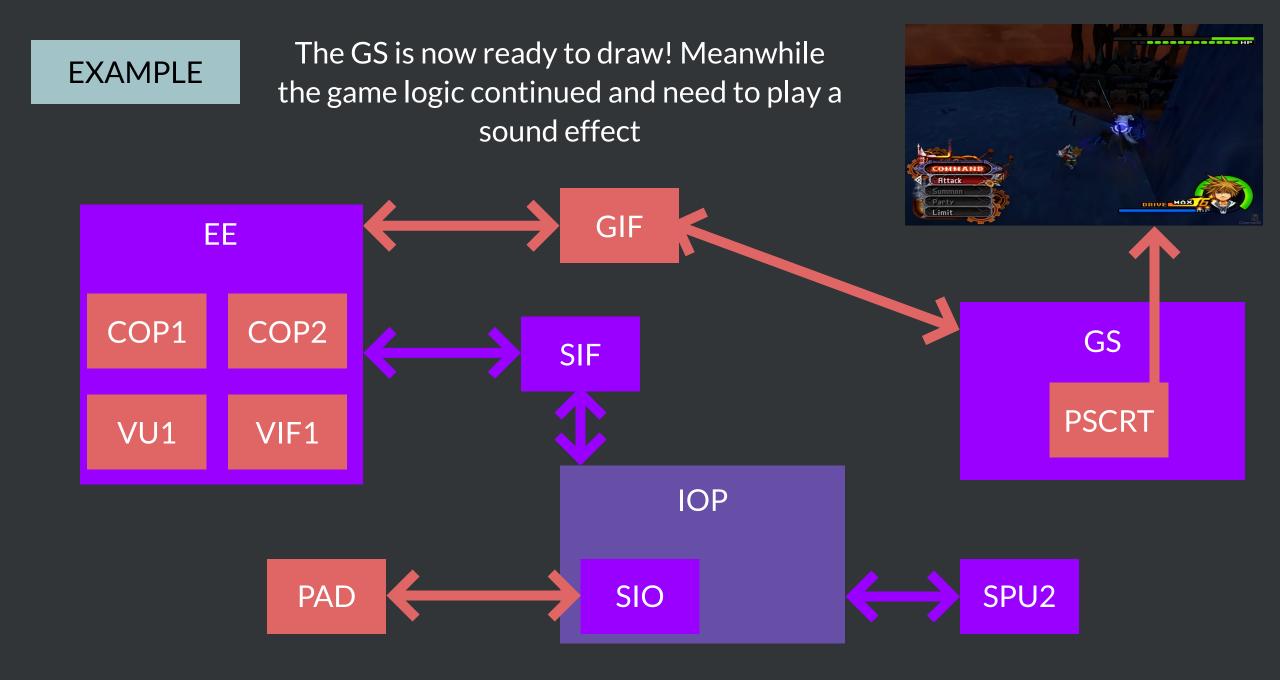




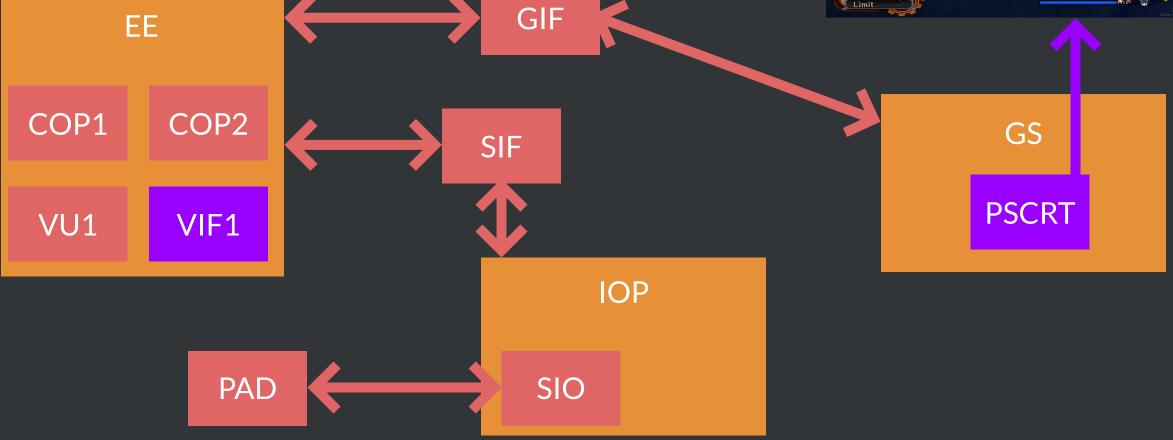








The EE runs the enemy's AI logic, does some trigonometry for hitbox with COP1 and COP2 for the next frame



The GS now draws the frame on screen while the game logic continued and a new 3D model is loaded into VU memory

...and diagrams that doesn't make sense

...and diagrams that doesn't make sense

The core idea is that the game logic, rendering logic and I/O logic are all able to run in parallel on the different cores

...and diagrams that doesn't make sense

The core idea is that the game logic, rendering logic and I/O logic are all able to run in parallel on the different cores

There is an infinite number of possible arrangements of your rendering pipeline, try to imagine others!

HOW DOES EMULATION WORK

What is the first step of making an emulator?

What is the first step of making an emulator?

1 → KH2FM file KH2FM.ISO 2 KH2FM.ISO: UDF filesystem data (version 1.5) '' 3 → KH2FM file SLPM_666.75 4 SLPM_666.75: ELF 32-bit LSB executable, MIPS, MIPS-III version 1 (SYSV), statically linked, stripped

What is the first step of making an emulator?

1 → KH2FM file KH2FM.ISO
2 KH2FM.ISO: UDF filesystem data (version 1.5) ''
3 → KH2FM file SLPM_666.75
4 SLPM_666.75: ELF 32-bit LSB executable, MIPS, MIPS-III version 1 (SYSV), statically linked, stripped

File parsers!

PARSERS

```
1 // return value:
 2 // 0 - Invalid or unknown disc.
 3 // 1 - PS1 CD
 4 // 2 - PS2 CD
 5 int GetPS2ElfName( wxString& name )
 6 {
           int retype = 0;
           try {
10
                   IsoFSCDVD isofs;
11
                   IsoFile file( isofs, L"SYSTEM.CNF;1");
12
                   int size = file.getLength();
13
14
                   if( size == 0 ) return 0;
15
       [...]
16 }
```


PARSERS

PARSERS

```
2 if( parts.lvalue == L"BOOT2" )
3 {
           name = parts.rvalue;
           Console.WriteLn( Color StrongBlue, L"(SYSTEM.CNF) Detected PS2 Disc = " + name );
           retype = 2;
 7 }
8 else if( parts.lvalue == L"BOOT" )
9 {
10
           name = parts.rvalue;
           Console.WriteLn( Color StrongBlue, L"(SYSTEM.CNF) Detected PSX/PSone Disc = " +
11
   name );
12
           retype = 1;
13 }
14 else if( parts.lvalue == L"VMODE" )
15 {
           Console.WriteLn( Color Blue, L"(SYSTEM.CNF) Disc region type = " + parts.rvalue );
16
17 }
18 else if( parts.lvalue == L"VER" )
19 {
           Console.WriteLn( Color Blue, L"(SYSTEM.CNF) Software version = " + parts.rvalue );
20
21 }
```

INTERPRETER

```
3 void R5900::Interpreter::OpcodeImpl::SWC1() {
           u32 addr;
           addr = cpuRegs.GPR.r[_Rs_].UL[0] + (s16)(cpuRegs.code & 0xffff);
           if (addr & 0x0000003)
           {
             Console.Error( "FPU (SWC1 Opcode): Invalid Unaligned Memory Address" );
10
             return;
11
12
           memWrite32(addr, fpuRegs.fpr[ Rt ].UL);
13 }
14
15 void recSWC1()
16 {
           recCall(::R5900::Interpreter::OpcodeImpl::SWC1);
17
18 }
```

RECOMPILER

```
1 void recSWC1()
 3 #ifndef FPU RECOMPILE
           recCall(::R5900::Interpreter::OpcodeImpl::SWC1);
 5 #else
           _deleteFPtoXMMreg(_Rt_, 1);
           xMOV(arg2regd, ptr32[&fpuRegs.fpr[_Rt_].UL] );
10
           if( GPR IS CONST1( Rs ) )
11
           {
12
                   int addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
13
                   vtlb DynGenWrite Const(32, addr);
14
           }
           else
15
16
           {
17
                    _eeMoveGPRtoR(arg1regd, _Rs_);
18
                   if (Imm != 0)
19
                           xADD(arg1regd, _Imm_);
20
21
                   iFlushCall(FLUSH FULLVTLB);
22
23
                   vtlb DynGenWrite(32);
24
           }
25
26
           EE::Profiler.EmitOp(eeOpcode::SWC1);
27 #endif
28 }
```

SELF-MODIFYING CODE

```
1 void mmap PageFaultHandler::OnPageFaultEvent( const PageFaultInfo& info, bool& handled )
 2 {
           pxAssert( eeMem );
           uptr offset = info.addr - (uptr)eeMem->Main;
           if( offset >= Ps2MemSize::MainRam ) return;
           mmap ClearCpuBlock( offset );
10
           handled = true;
11 }
12
13 // offset - offset of address relative to psM.
14 // All recompiled blocks belonging to the page are cleared, and any new blocks recompiled
15 // from code residing in this page will use manual protection.
16 static fi void mmap ClearCpuBlock( uint offset )
17 {
18
19 }
```


SYSCALL

We can sorta emulate some instructions!

We can sorta emulate some instructions!

We now need to emulate PS2-specific ones

2 ways to do it:

We now need to emulate PS2-specific ones

2 ways to do it:

• HLE: Reimplement them like an interpreter

We now need to emulate PS2-specific ones

2 ways to do it:

- HLE: Reimplement them like an interpreter
- LLE: Run the BIOS

We now need to emulate PS2-specific ones

2 ways to do it:

- HLE: Reimplement them like an interpreter
- LLE: Run the BIOS

We now need to emulate PS2-specific ones

2 ways to do it:

- HLE: Reimplement them like an interpreter
- LLE: Run the BIOS

PS2 GAMES PATCH THE BIOS

The BIOS is available on the flash chip!

The BIOS is available on the flash chip!

Unencrypted!!

The BIOS is available on the flash chip!

Unencrypted!!

Save for the DVD EROM, probably to hide the CSS

The BIOS is available on the flash chip!

Unencrypted!!

Save for the DVD EROM, probably to hide the CSS

We don't really care about it though :D

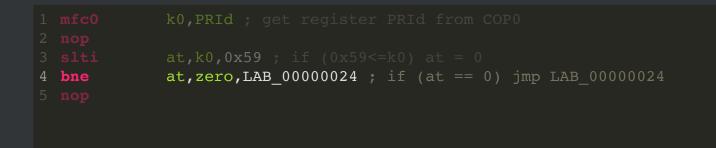
DUMPING THE BIOS

The BIOS is available on the flash chip!

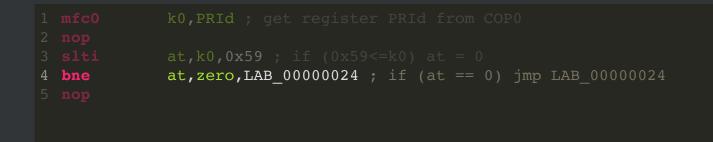
Unencrypted!!

Save for the DVD EROM, probably to hide the CSS

We don't really care about it though :D

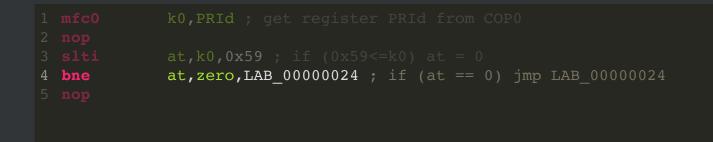

A few soldering hackjobs later...

BIOS ENTRYPOINT


1	mfc0	k0,PRId ; get register PRId from COP0
		at,k0,0x59 ; if (0x59<=k0) at = 0
		<pre>at,zero,LAB_00000024 ; if (at == 0) jmp LAB_00000024</pre>

		k0,PRId ; get register PRId from COP0
3 4	slti bne nop	<pre>at,k0,0x59 ; if (0x59<=k0) at = 0 at,zero,LAB_00000024 ; if (at == 0) jmp LAB_00000024</pre>

	k0,PRId ; get register PRId from COP0
slti bne	<pre>at,k0,0x59 ; if (0x59<=k0) at = 0 at,zero,LAB_00000024 ; if (at == 0) jmp LAB_00000024</pre>



COP0 is not the same between the IOP and the EE

COP0 is not the same between the IOP and the EE

This bit of code effectively is the entrypoint for both the IOP and the EE

COP0 is not the same between the IOP and the EE

This bit of code effectively is the entrypoint for both the IOP and the EE

We already have to emulate the IOP


Architecture

CUSTOM ARCHITECTURE

Architecture

CUSTOM ARCHITECTURE

How do you figure out a custom ISA?

How do you figure out a custom ISA? Essentially 2 ways:

How do you figure out a custom ISA? Essentially 2 ways:

• Make assumptions, test assumptions on hardware

How do you figure out a custom ISA? Essentially 2 ways:

- Make assumptions, test assumptions on hardware
- Get documentation from Sony

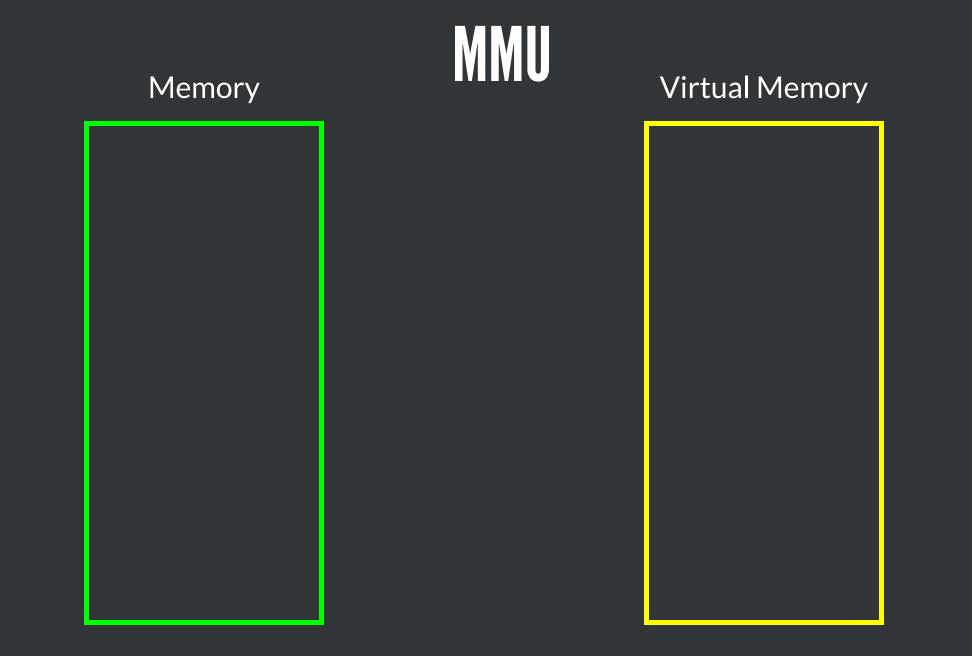
How do you figure out a custom ISA?

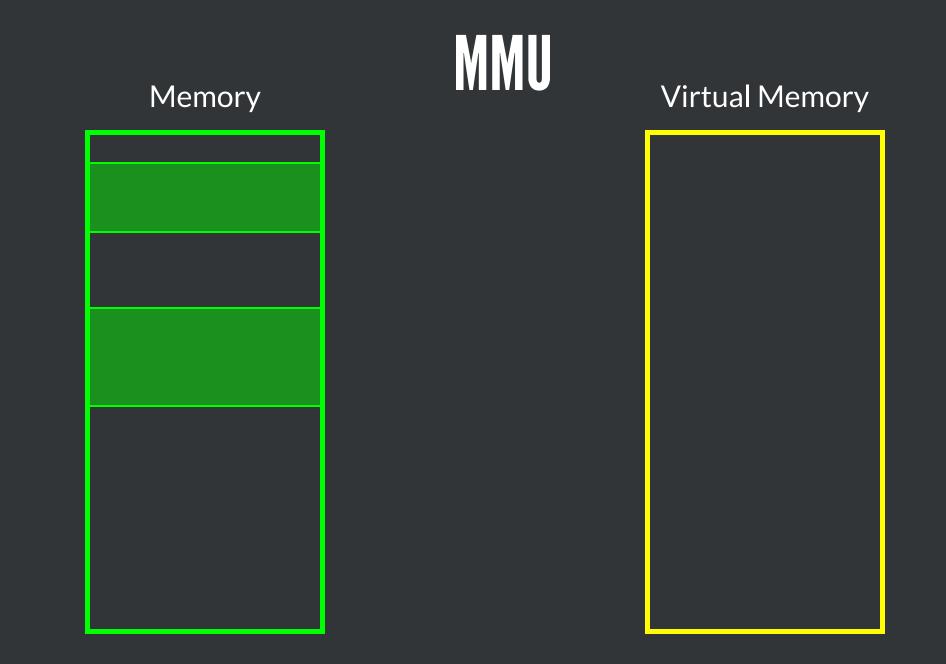
Essentially 2 ways:

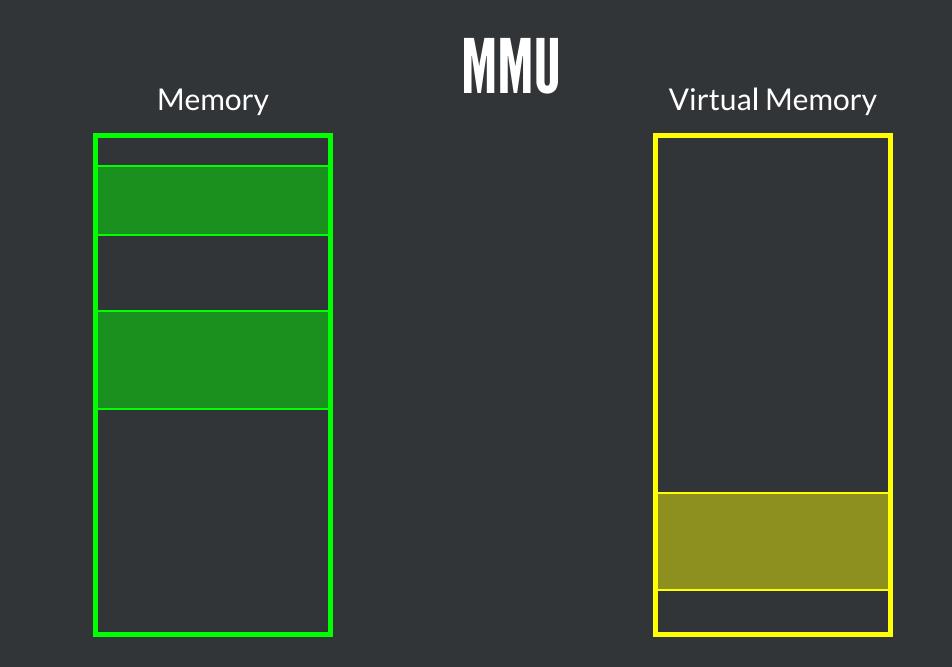
- Make assumptions, test assumptions on hardware
- Get documentation from Sony

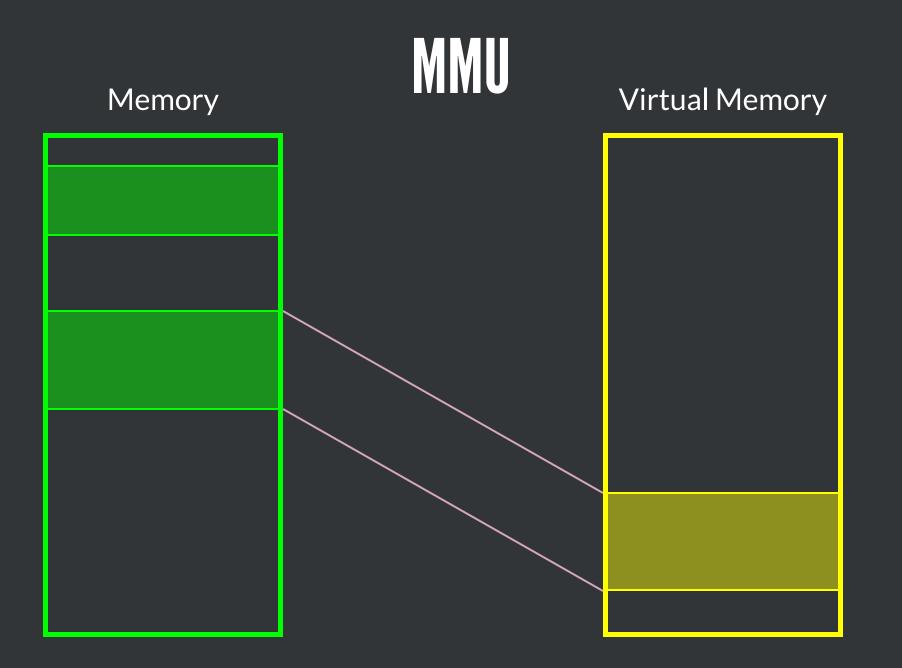
How do you figure out a custom ISA? Essentially 2 ways:

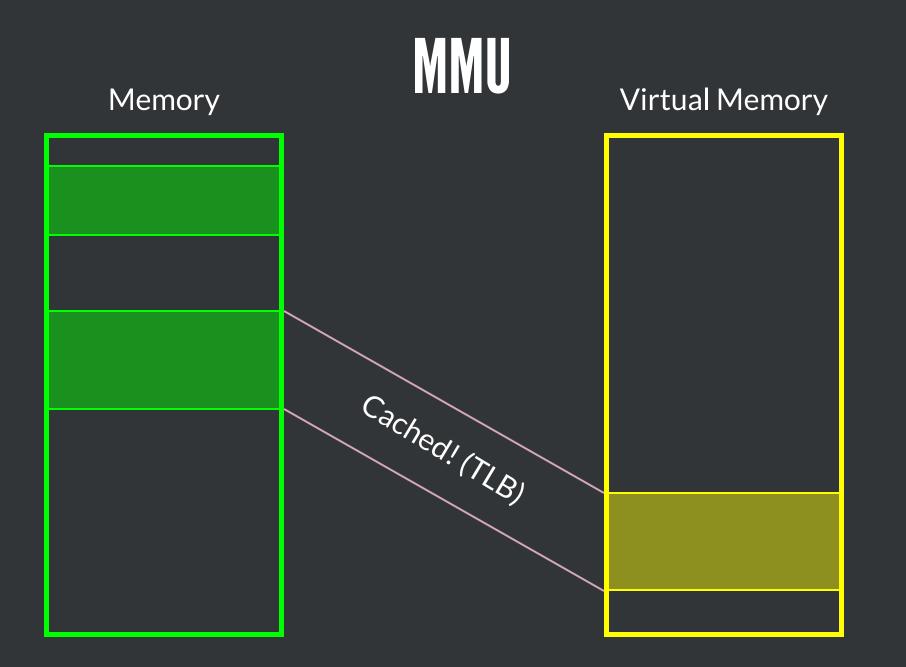
- Make assumptions, test assumptions on hardware
- Get documentation from Sony


Here's a talk for some insight on the process:


How do you figure out a custom ISA? Essentially 2 ways:


- Make assumptions, test assumptions on hardware
- Get documentation from Sony


Here's a talk for some insight on the process:


Reverse engineering of binary programs for custom virtual machines

The EE has an MMU we need to emulate, meet VTLB!

```
1 void ___fastcall vtlb_memRead64(u32 mem, mem64_t *out)
   {
           auto vmv = vtlbdata.vmap[mem>>VTLB_PAGE_BITS];
           if (!vmv.isHandler(mem))
                   if (!CHECK EEREC) {
                            if(CHECK_CACHE && CheckCache(mem))
10
                                    *out = readCache64(mem);
11
                                    return;
12
                            }
13
                    }
14
15
                   *out = *(mem64 t*)vmv.assumePtr(mem);
```


The EE has an MMU we need to emulate, meet recVTLB!

```
4 void vtlb DynGenRead64 Const( u32 bits, u32 addr const )
5 {
           EE::Profiler.EmitConstMem(addr const);
           auto vmv = vtlbdata.vmap[addr const>>VTLB PAGE BITS];
           if( !vmv.isHandler(addr const) )
10
11
                   auto ppf = vmv.assumePtr(addr const);
12
                   switch( bits )
13
14
                            case 64:
15
                                    iMOV64 Smart( ptr[arg2reg], ptr[(void*)ppf] );
16
                            break;
17
18
                            case 128:
19
                                    iMOV128 SSE( ptr[arg2reg], ptr[(void*)ppf] );
20
                            break;
21
22
                            jNO DEFAULT
23
                   }
24
25 [...]
```


MULTI CORE SHENANIGANS

MULTI CORE SHENANIGANS

Now that we have multiple CPU cores running in parallel we need to handle them concurrently

MULTI CORE SHENANIGANS

Now that we have multiple CPU cores running in parallel we need to handle them concurrently

We have our own thread scheduler to do that, meet SysExecutor!

SysExecutor

MULTI CORE SHENANIGANS

```
1 void pxEvtQueue::ProcessEvent( SysExecEvent* evt )
           if( !evt ) return;
           if( wxThread::GetCurrentId() != m_OwnerThreadId )
                   SynchronousActionState sync;
                   evt->SetSyncState( sync );
                   PostEvent( evt );
                   sync.WaitForResult();
10
11
           }
12
           else
13
                   std::unique ptr<SysExecEvent> deleteMe(evt);
14
15
                   deleteMe-> DoInvokeEvent();
16
17
           [...]
```


DISPATCHING TO PROCESSORS

DISPATCHING TO PROCESSORS

How do we transfer data from, say, the IOP to DEV9?

DISPATCHING TO PROCESSORS

How do we transfer data from, say, the IOP to DEV9?

Our JIT fallbacks to Interpreters and verifies where the write should go!

Dispatch

DISPATCHING TO PROCESSORS

```
1 static void rpsxSB()
2 {
       _psxDeleteReg(_Rs_, 1);
       psxDeleteReg( Rt , 1);
       xMOV(arg1regd, ptr32[&psxRegs.GPR.r[ Rs ]]);
       if ( Imm ) xADD(arg1regd, Imm );
       xMOV( arg2regd, ptr32[&psxRegs.GPR.r[_Rt_]] );
       xFastCall((void*)iopMemWrite8, arg1regd, arg2regd );
10 }
11
12 void fastcall iopMemWrite8(u32 mem, u8 value)
13 {
14
           mem &= 0x1ffffff;
15
           u32 t = mem >> 16;
16
17
           else
18
           {
19
                   if (!(p != NULL && !(psxRegs.CP0.n.Status & 0x10000) ))
20
                   {
21
                           if (t == 0x1000)
22
23
                                   DEV9write8(mem, value); return;
24
25
                           PSXMEM LOG("err sb %8.81x = %x", mem, value);
26
                   }
27
           }
28 }
```


EMULATING SOUND

We run an async loop that processes audio while everything else is running

SPU2

EMULATING SOUND

```
forceinline void TimeUpdate(u32 cClocks)
           u32 dClocks = cClocks - lClocks;
           if (dClocks > (u32)-15)
11
12
           if (SynchMode == 1) // AsyncMix on
13
                    SndBuffer::UpdateTempoChangeAsyncMixing();
15
                    TickInterval = 768; // Reset to default
17
           while (dClocks >= TickInterval)
                    for (int i = 0; i < 2; i++)</pre>
21
22
                            if (has to call irq[i])
23
24
                                     has to call irq[i] = false;
                                     if (!(Spdif.Info & (4 << i)) && Cores[i].IRQEnable)</pre>
27
                                             Spdif.Info |= (4 \ll i);
                                             if (!SPU2 dummy callback)
29
                                                     spu2Irq();
                                     }
                            }
32
                    Mix();
33
34
                    [...]
```

SPU2

EMULATING SOUND

```
forceinline void Mix()
           [...]
           Out.Left *= FinalVolume;
           Out.Right *= FinalVolume;
           SndBuffer::Write(Out);
           [...]
9 }
11
12 void SndBuffer::Write(const StereoOut32& Sample)
14
           [...]
15
17
                   if (SynchMode == 0) // TimeStrech on
                           timeStretchWrite();
                   else
                            WriteSamples(sndTempBuffer, SndOutPacketSize);
21
           }
22 }
23
24
25 void SndOut SDL::callback fillBuffer(void* userdata, Uint8* stream, int len)
27
           [...]
           for (Uint16 i = 0; i < sdl samples; i += SndOutPacketSize)</pre>
                   SndBuffer::ReadSamples(&buffer[i]);
29
           SDL MixAudio(stream, (Uint8*)buffer.get(), len, SDL MIX MAXVOLUME);
```

EMULATING GRAPHICS

```
1 void GSState::FlushPrim()
2 {
           if (m index.tail > 0)
                   GL_REG("FlushPrim ctxt %d", PRIM->CTXT);
                   if (GSLocalMemory::m psm[m context->FRAME.PSM].fmt < 3 && GSLocalMemory::m_psm[m_context->ZBUF.PSM].fmt < 3)
                           m_vt.Update(m_vertex.buff, m_index.buff, m_vertex.tail, m_index.tail, GSUtil::GetPrimClass(PRIM->PRIM));
9
10
11
                           m_context->SaveReg();
12
13
                           try
14
15
                                   Draw();
16
```

10

11

12

13

14

15 16

17

18

19 20

23

24

25

27

EMULATING GRAPHICS

```
1 void GSRendererHW::Draw()
2 {
           if(m dev->IsLost() || IsBadFrame()) {
                   GL INS("Warning skipping a draw call (%d)", s n);
                   return;
           }
           GL PUSH("HW Draw %d", s n);
           [...]
           GSTextureCache::Target* rt = NULL;
           GSTexture* rt tex = NULL;
           if (!no rt) {
                   rt = m tc->LookupTarget(TEX0, m width, m height, GSTextureCache::RenderTarget, true, fm);
                   rt tex = rt->m texture;
           }
           TEX0.TBP0 = context->ZBUF.Block();
           TEX0.TBW = context->FRAME.FBW;
           TEX0.PSM = context->ZBUF.PSM;
           GSTextureCache::Target* ds = NULL;
21
           GSTexture* ds tex = NULL;
22
           if (!no ds) {
                   ds = m tc->LookupTarget(TEX0, m width, m height, GSTextureCache::DepthStencil, context->DepthWrite());
                   ds tex = ds->m texture;
           }
26
           [...]
           DrawPrims(rt tex, ds tex, m src);
```

EMULATING GRAPHICS

```
1 void GSRendererOGL::DrawPrims(GSTexture* rt, GSTexture* ds, GSTextureCache::Source* tex)
2 {
           EmulateChannelShuffle(&rt, tex);
11
           MergeSprite(tex);
12
13
           m prim overlap = PrimitiveOverlap();
17
           if (!IsOpaque() && rt) {
                   EmulateBlending(DATE GL42, DATE GL45);
           } else {
                   dev->OMSetBlendState(); // No blending please
21
22
           if (m ps sel.dfmt == 1) {
23
24
25
                   m om csel.wa = 0;
27
           if (DATE && !DATE GL45) {
29
                   GSVector4i dRect = ComputeBoundingBox(rtscale, rtsize);
           dev->BeginScene();
33
           EmulateZbuffer(); // will update VS depth mask
34
```


OTHER COMPONENTS

OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works relatively similarly and as such I won't mention them for brevity sake

OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works relatively similarly and as such I won't mention them for brevity sake

Memory writes are handled by the module, which simulates the I/O.

OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works relatively similarly and as such I won't mention them for brevity sake

Memory writes are handled by the module, which simulates the I/O.

OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works relatively similarly and as such I won't mention them for brevity sake

Memory writes are handled by the module, which simulates the I/O.

It is then piped to one of multiple system backend. e.g.:

• PAD: SDL

OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works relatively similarly and as such I won't mention them for brevity sake

Memory writes are handled by the module, which simulates the I/O.

- PAD: SDL
- DEV9: TAP

OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works relatively similarly and as such I won't mention them for brevity sake

Memory writes are handled by the module, which simulates the I/O.

- PAD: SDL
- DEV9: TAP
- USB-video: V4L

OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works relatively similarly and as such I won't mention them for brevity sake

Memory writes are handled by the module, which simulates the I/O.

- PAD: SDL
- DEV9: TAP
- USB-video: V4L
- MCD: your filesystem!

OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works relatively similarly and as such I won't mention them for brevity sake

Memory writes are handled by the module, which simulates the I/O.

- PAD: SDL
- DEV9: TAP
- USB-video: V4L
- MCD: your filesystem!
- CDVD: linux/cdrom.h>

Threading the GS and the VU!

Threading the GS and the VU!

Threading the GS is done by waiting for data to be received then have multiple rendering threads in parallel when all transfers are achieved

Threading the GS and the VU!

Threading the GS is done by waiting for data to be received then have multiple rendering threads in parallel when all transfers are achieved

Fairly safe

Threading the GS and the VU!

Threading the GS is done by waiting for data to be received then have multiple rendering threads in parallel when all transfers are achieved

Fairly safe

Threading the VU is much harder and not nearly as safe

Threading the GS and the VU!

Threading the GS is done by waiting for data to be received then have multiple rendering threads in parallel when all transfers are achieved

Fairly safe

Threading the VU is much harder and not nearly as safe

Still considered a SpeedHack, still break things

Threading the GS and the VU!

Threading the GS is done by waiting for data to be received then have multiple rendering threads in parallel when all transfers are achieved

Fairly safe

Threading the VU is much harder and not nearly as safe

Still considered a SpeedHack, still break things

Read up our dev blog about threading VU1 for more infos!

Not going too fast!!

Make VU run closer in sync with EE, implement Mbit #3593 refractionpcsx2 merged 2 commits into PCSX2:master from kozarovv:VU_cycles [] on Aug 29, 2020

Changes by Refraction:

Implement basic cycle counting for COP2 operations, implement COP2 detection while not interlocking, implement Mbit, change drastically cycles required to run every microprogram. Improved flag handling while COP2 update them.

Additionally:

As explained here: Link. Hardware tests proved that VU run at the same speed as EE mips core. So lets set that in pcsx2 where it is possible.

Make VU run closer in sync with EE, implement Mbit #3593

refractionpcsx2 merged 2 commits into PCSx2:master from kozarovv:VU_cyctes 📋 on Aug 29, 2

Changes by Refraction

Implement basic cycle counting for COP2 operations, implement COP2 detection while not interlocking, implement Mbit, change drastically cycles required to run every microprogram. Improved flag handling while COP2 update them.

Additionally:

As explained here: Link. Hardware tests proved that VU run at the same speed as EE mips core. So lets set that in pcsx2 where it is possible.

Fixed games in this commit:

- (VIF) Hitman games Could have potentially crashed randomly with TLB misses or FIFO errors, no longer happenin
- 24 The game, Primal, Ghosthunter No longer need patches to get full speed
- Air Rescue Ranger Textures are now displayed correctly
- Amplitude SPS on characters fixed
- Gift, Woody Woodpecker, Kaan Now work full speed
- Lotus Challenge Cars are no longer bouncy!
- My Street missing characters now visible, still exhibit a small amount of SPS in microVU0 but perfect in VU0 Int
- Mike Tysons Heavyweight Box T posing seethrough characters are now whole and animated
- Next Generation Tennis 2003 No longer need patch to fix SPS
- Nichibeikan Pro Yakyuu: Final League / World Fantasista Random glitches are gone
- Phase Paradox Lighting and Camera in cutscenes are fixed
- Rayman 2 Revolution Random jittering no longer happens

- Sega Superstars Tennis SPS on hands/feet is now gone
- Tiger woods PGA Tour 2002 Fixed player stance
- Tony Hawk 4 Wakeboarding Unleashed demo no longer crash at loading screen (demo need XGKick hack)
- Totally Spies Totally Party! Bad SPS somewhat fixed Will require you to set EE Cyclerate + 3 to completely fix.
- Twisted Metal Head-On Black doors have now proper colors
- Wakeboarding Unleashed No longer hangs getting to the menu on release builds
- World Series Baseball 2k3 No longer hang on loading screen (game still have other issues)

Game issues fixed: fixes #1448 fixes #3252 fixes #3028 fixes #1473 fixes #94

Faster isn't always better !

Make VU run closer in sync with EE, implement Mbit #3593

refractionpcsx2 merged 2 commits into PCSX2:master from kozarovv:VU_cyctes 💾 on Aug 29, 2020

Changes by Refraction:

Implement basic cycle counting for COP2 operations, implement COP2 detection while not interlocking, implement Mbit, change drastically cycles required to run every microprogram. Improved flag handling while COP2 update them.

Additionally:

As explained here: Link, Hardware tests proved that VU run at the same speed as EE mips core. So lets set that in pcsx2 where it is possible.

Fixed games in this commit:

- (VIF) Hitman games Could have potentially crashed randomly with TLB misses or FIFO errors, no longer happenin
- 24 The game, Primal, Ghosthunter No longer need patches to get full speed
- Air Rescue Ranger Textures are now displayed correctly
- Amplitude SPS on characters fixed
- Gift, Woody Woodpecker, Kaan Now work full speed
- Lotus Challenge Cars are no longer bouncy!
- My Street missing characters now visible, still exhibit a small amount of SPS in microVU0 but perfect in VU0 Int
- Mike Tysons Heavyweight Box T posing seethrough characters are now whole and animated
- Next Generation Tennis 2003 No longer need patch to fix SPS
- Nichibeikan Pro Yakyuu: Final League / World Fantasista Random glitches are gone
- Phase Paradox Lighting and Camera in cutscenes are fixed
- Rayman 2 Revolution Random jittering no longer happens

- Sega Superstars Tennis SPS on hands/feet is now gone
- Tiger woods PGA Tour 2002 Fixed player stance
- Tony Hawk 4 Wakeboarding Unleashed demo no longer crash at loading screen (demo need XGKick hack)
- Totally Spies Totally Party! Bad SPS somewhat fixed Will require you to set EE Cyclerate + 3 to completely fix.
- Twisted Metal Head-On Black doors have now proper colors
- Wakeboarding Unleashed No longer hangs getting to the menu on release builds
- World Series Baseball 2k3 No longer hang on loading screen (game still have other issues)

Game issues fixed: fixes #1448 fixes #3252 fixes #3028 fixes #1473 fixes #94

Emulating the laws of physics

Emulating the laws of physics

No, really

Emulating the laws of physics

No, really

CDVD: Adjust read speed depending on if in inner/outer edge #3877					
ୟ) Cor	versation 17 - Commits 2 F Checks 7 🗄 Files changed 3				+31 –9
	refractionpcsx2 commented on Oct 31, 2020 • edited →	Member	© ····	Reviewers No reviews	
	Fixes Shadowman 2 Second Coming textures Fixes Arctic Thunder loading problems Fixes looping music on ONI title screen and skipping dialogues Fixes Klonoa 2 missing audio Fixes SPS at the beginning of matches in Next Generation Tennis 2003 (Ronald Garros) - This one surprised me too Original comments mentioned Silent Hill 2 being starved during videos, but seems fine to me, but if somebody could test further in to the game, that'd be great.			Assignees No one—assign yourself	
				Labels CDVD High Priority	
	Edit: It does cause the second video (and later ones) to hang, however this isn't being starved of data, I can run the normal speed and it works, so there's some sort of annoying timing issue going on. Can be gotten around by cycle rate to -1 or enabling the Fast CDVD speedhack			Projects None yet	

Emulating the laws of physics

No, really

- 1 // Read speed is roughly 37% at lowest and full speed on outer edge.
- 2 // I imagine it's more logarithmic than this
- 3 // Required for Shadowman to work
- 4 // Use SeekToSector as Sector hasn't been updated yet
- 5 const float sectorSpeed = (((float)(cdvd.SeekToSector-offset) / numSectors) * 0.63f) +
 0.37f;
- 6 //DevCon.Warning("Read speed %f sector %d\n", sectorSpeed, cdvd.Sector);
- 7 return ((PSXCLK * cdvd.BlockSize) / ((float)(((mode == MODE_CDROM) ?
- PSX_CD_READSPEED : PSX_DVD_READSPEED) * cdvd.Speed) * sectorSpeed));

Making an infrastructure!

Making an infrastructure!

A website, forum, compatibility list, get testers...

Making an infrastructure!

A website, forum, compatibility list, get testers...

This is where **YOU** come in :D

Making an infrastructure!

A website, forum, compatibility list, get testers...

This is where **YOU** come in :D

We always need help, feel free to hang out and say hi!

Making an infrastructure!

A website, forum, compatibility list, get testers...

This is where **YOU** come in :D

We always need help, feel free to hang out and say hi!

https://discord.com/invite/TCz3t9k

Making an infrastructure!

A website, forum, compatibility list, get testers...

This is where **YOU** come in :D

We always need help, feel free to hang out and say hi!

https://discord.com/invite/TCz3t9k

You can bridge it to matrix with https://github.com/matrix-discord/mxpuppet-discord

PCSX2 is really old

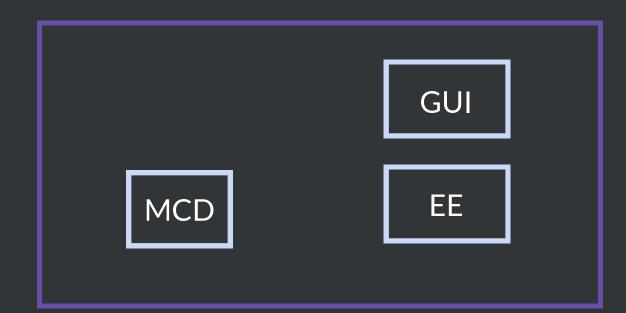
PCSX2 is really old

It has now a lot of legacy code that simply needs to be redone, redesigned or freshened up

PCSX2 is really old

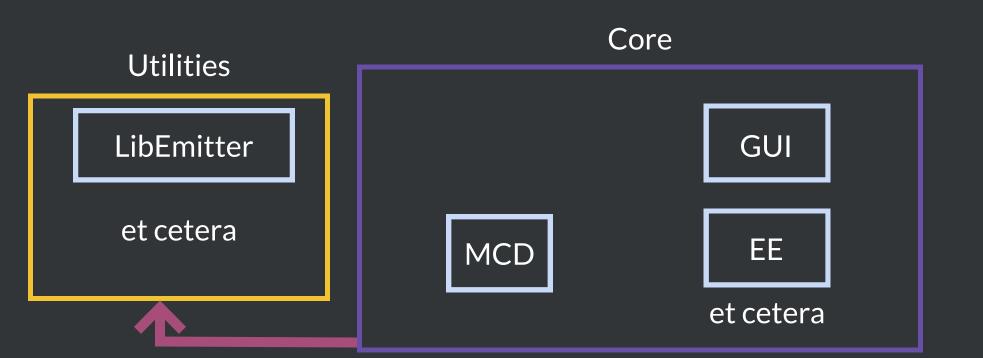
It has now a lot of legacy code that simply needs to be redone, redesigned or freshened up

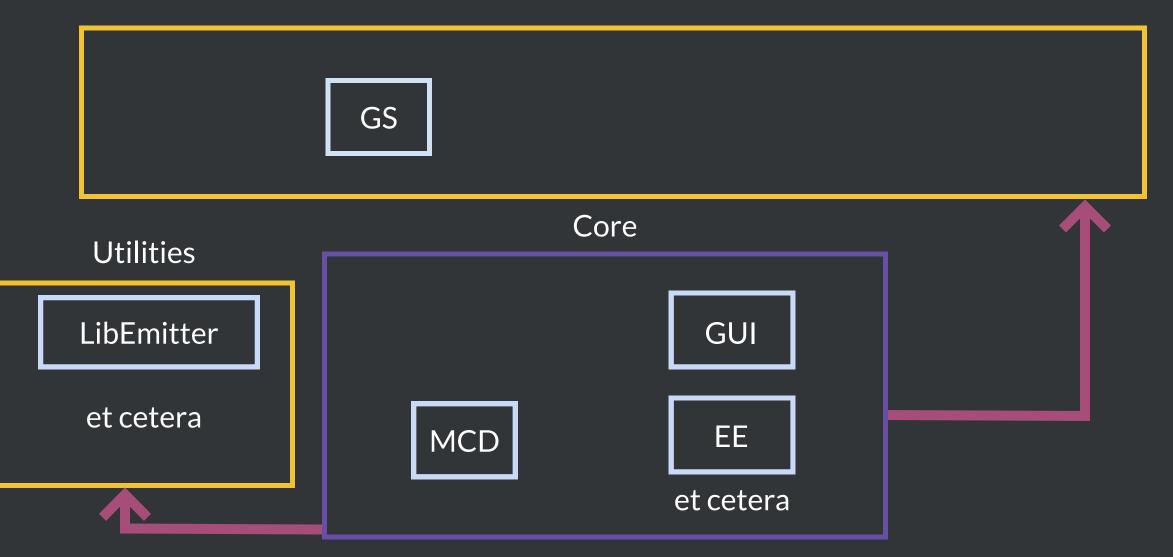
I am leading a whole codebase redesign effort

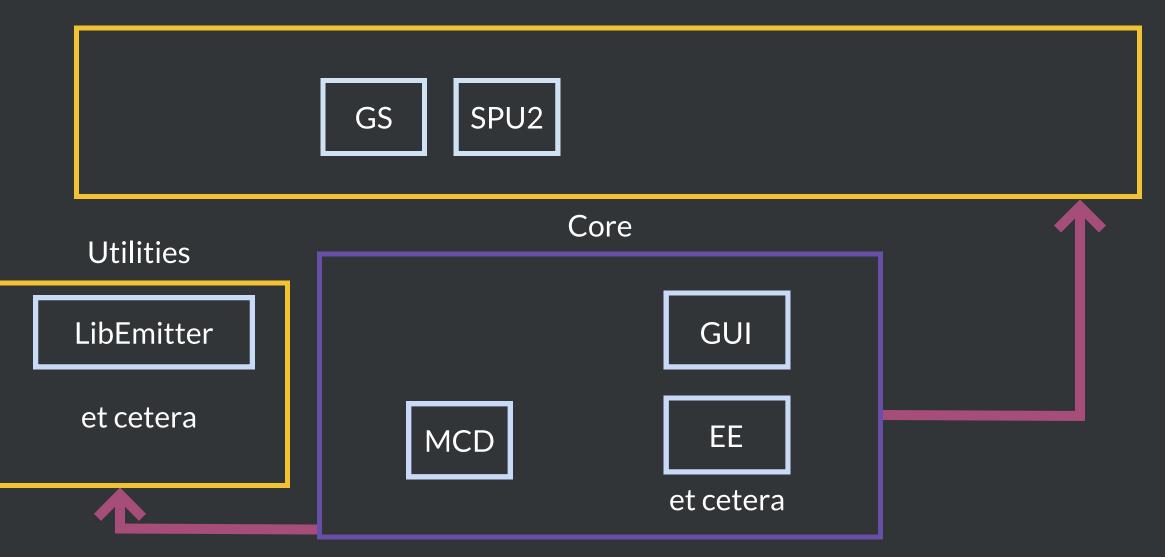

PCSX2 is really old

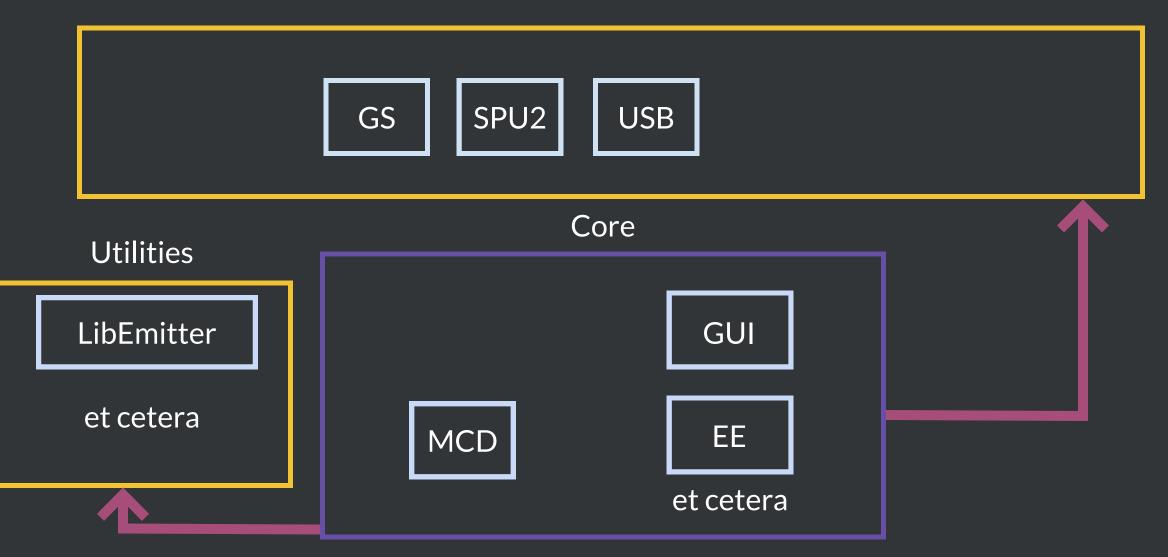
It has now a lot of legacy code that simply needs to be redone, redesigned or freshened up

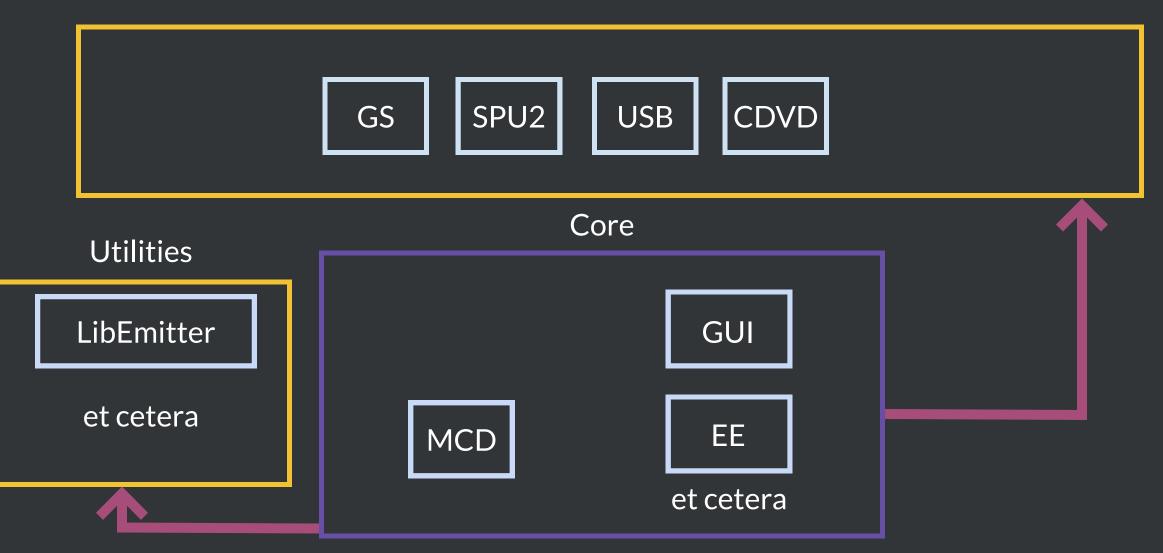
I am leading a whole codebase redesign effort

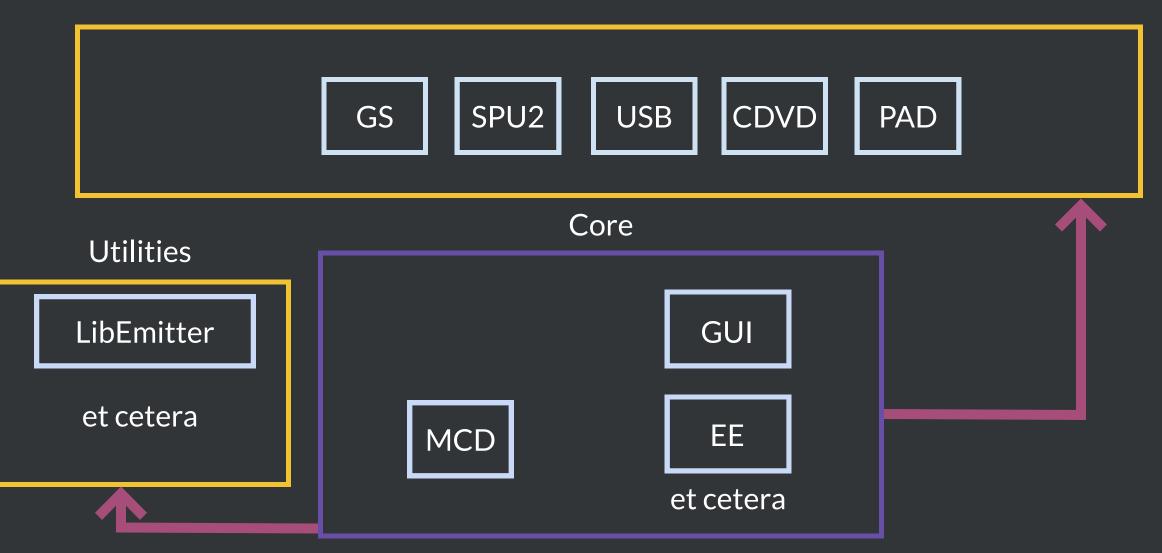

I'll show you in the next slides the state of things and what to expect!

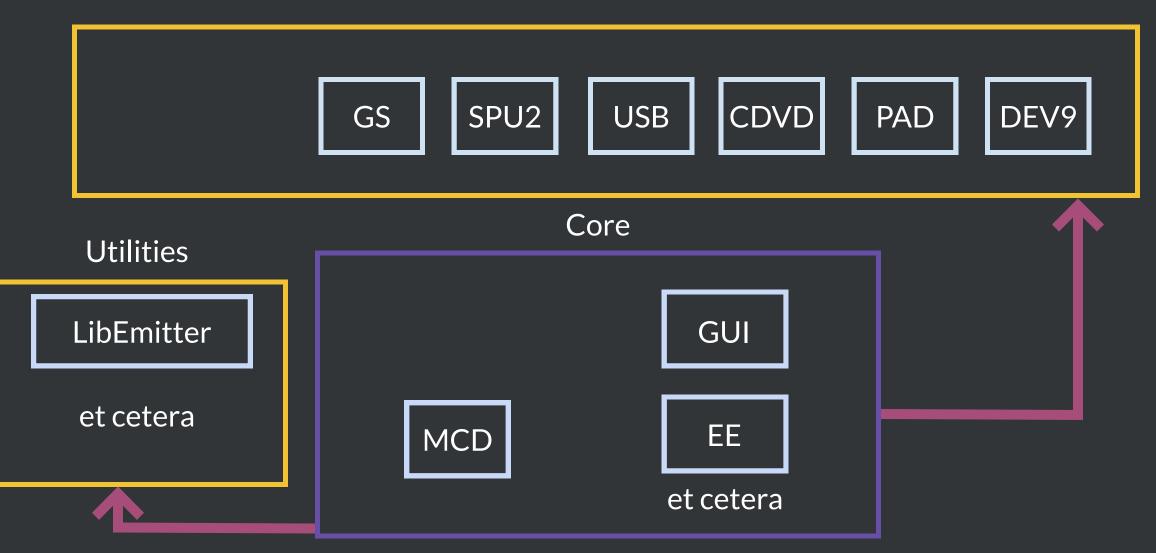


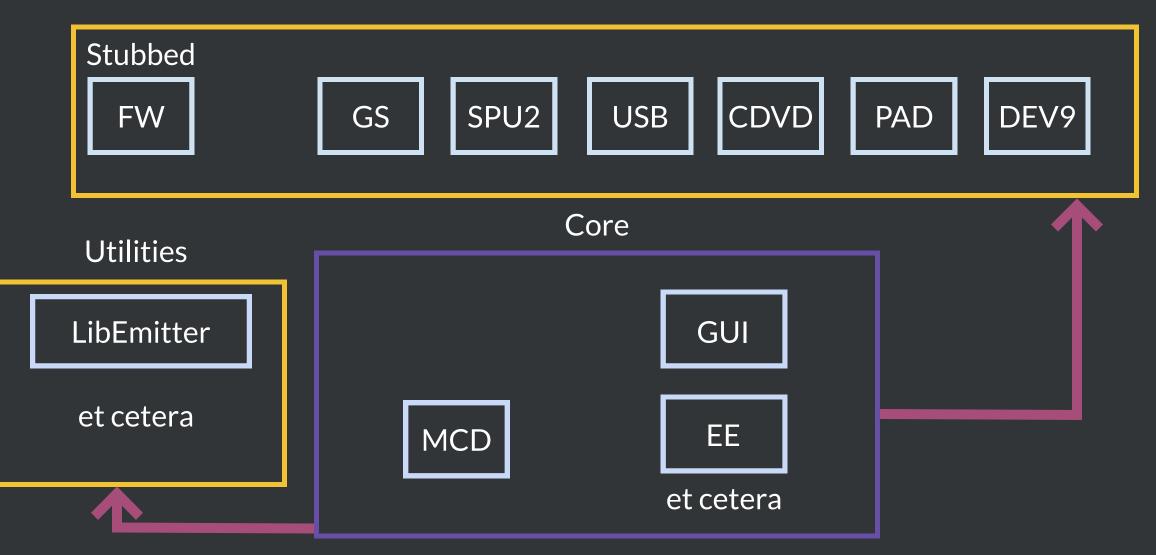


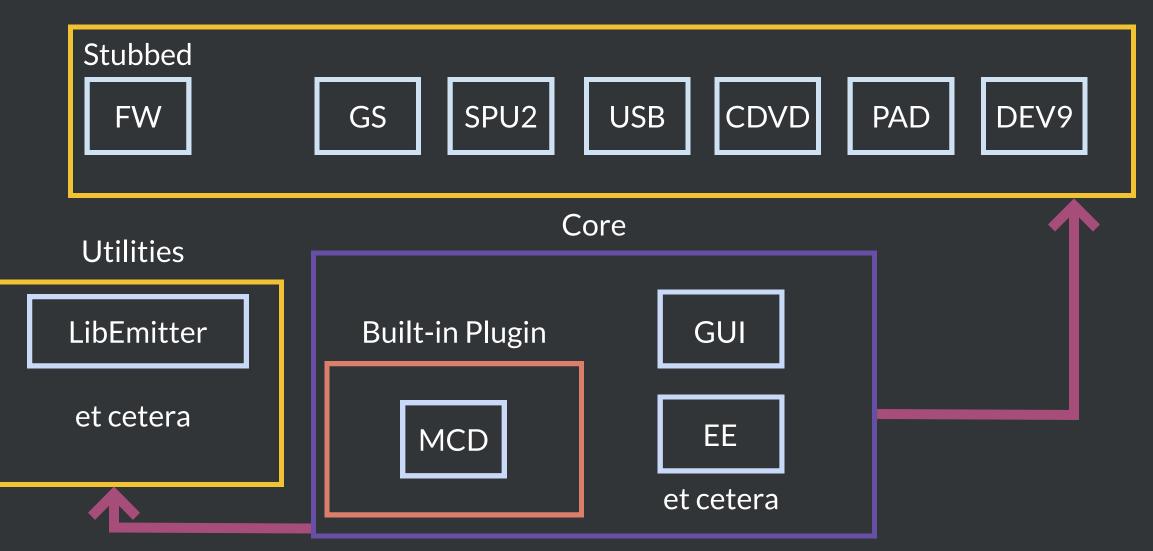


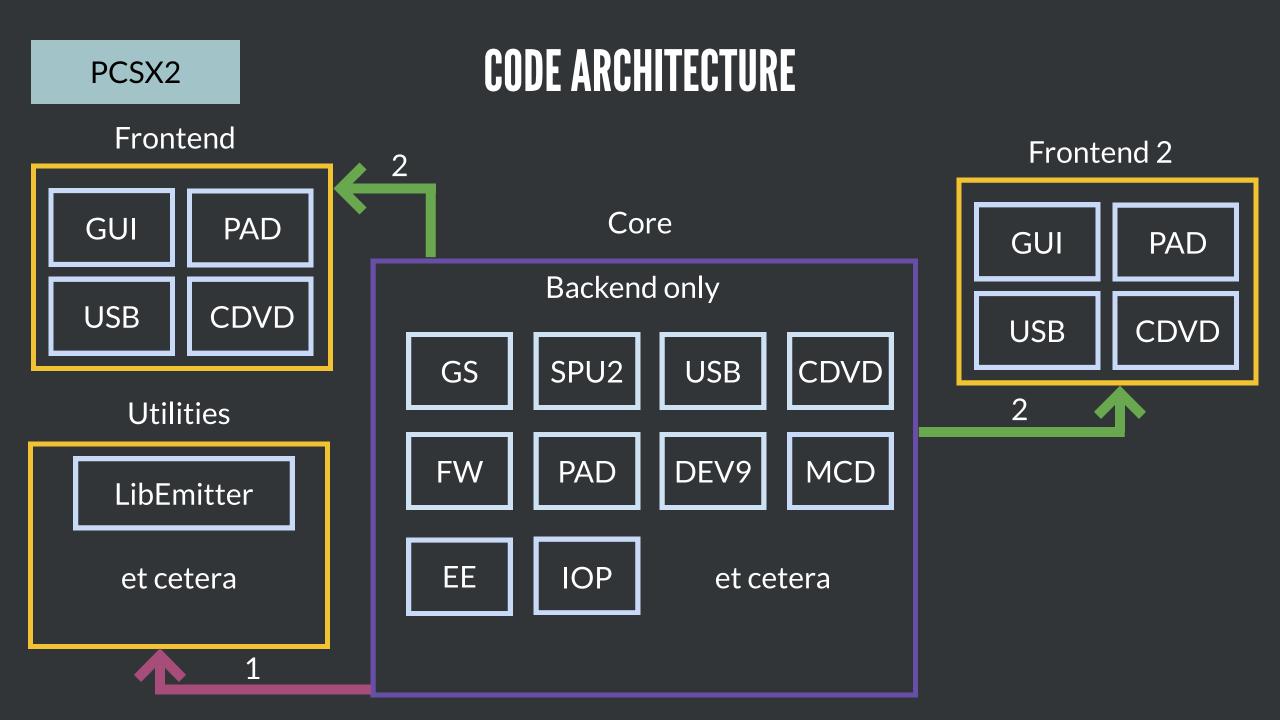












CODE ARCHITECTURE Hard dependency on wxWidgets!!

JIT

With all the mentioned challenges, it will take a couple of months to get things working reasonably stable. By that time, more people would have switched to 64bit OSs. If we're even half right in our estimates, Pcsx2 will run much faster on a 64bit OS than on a 32bit OS on the same computer once x86-64 recompilation is done.

With all the mentioned challenges, it will take a couple of months to get things working reasonably stable. By that time, more people would have switched to 64bit OSs. If we're even half right in our estimates, Pcsx2 will run much faster on a 64bit OS than on a 32bit OS on the same computer once x86-64 recompilation is done.

PCSX2 64bit Recompilation

Created: 29 October 2006 Written by ZeroFrog

With all the mentioned challenges, it will take a couple of months to get things working reasonably stable. By that time, more people would have switched to 64bit OSs. If we're even half right in our estimates, Pcsx2 will run much faster on a 64bit OS than on a 32bit OS on the same computer once x86-64 recompilation is done.

PCSX2 64bit Recompilation

Created: 29 October 2006 Written by ZeroFrog

Oops

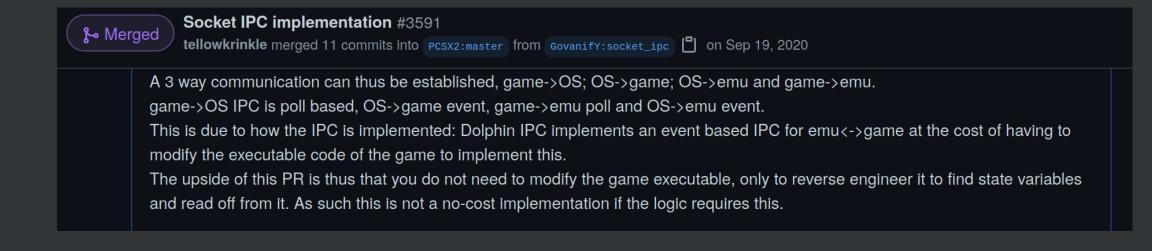
JIT

JIT

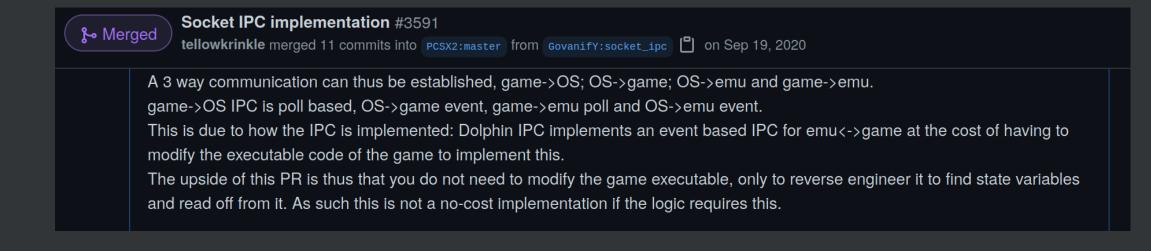
Fortunately, our 64 bit JIT is mostly done!

Fortunately, our 64 bit JIT is mostly done!

Fortunately, our 64 bit JIT is mostly done!


Unfortunately I'm giving a talk instead of fixing it :)

IPC


IPC

I've worked on a new protocol for 3 way game<->emulator<-> OS communication

I've worked on a new protocol for 3 way game<->emulator<-> OS communication

I've worked on a new protocol for 3 way game<->emulator<-> OS communication

Romhacks and game modding tools are about to get a lot more interesting!

What to expect for 1.8:

• No Plugins!

STATE OF THE PROJECT

- No Plugins!
- 64-bit Support!

STATE OF THE PROJECT

- No Plugins!
- 64-bit Support!
- Reduced Input Lag!

STATE OF THE PROJECT

- No Plugins!
- 64-bit Support!
- Reduced Input Lag!
- A new shiny IPC protocol!

STATE OF THE PROJECT

- No Plugins!
- 64-bit Support!
- Reduced Input Lag!
- A new shiny IPC protocol!
- …and much more (read our progress reports!)

STATE OF THE PROJECT

What might be ready for 2.0:

• A New Qt based GUI along with support for pluggable & community GUIs

STATE OF THE PROJECT

What might be ready for 2.0:

- A New Qt based GUI along with support for pluggable & community GUIs
- Rework of our Infrastructure/Website

STATE OF THE PROJECT

What might be ready for 2.0:

- A New Qt based GUI along with support for pluggable & community GUIs
- Rework of our Infrastructure/Website
- Work on a pluggable JIT backend

STATE OF THE PROJECT

What might be ready for 2.0:

- A New Qt based GUI along with support for pluggable & community GUIs
- Rework of our Infrastructure/Website
- Work on a pluggable JIT backend
- A full cleanup of the codebase!

STATE

STATE OF THE PROJECT

What might be ready for 2.0:

- A New Qt based GUI along with support for pluggable & community GUIs
- Rework of our Infrastructure/Website
- Work on a pluggable JIT backend
- A full cleanup of the codebase!
- And hopefully other nice surprises ;)

CLOSING NOTES

CLOSING NOTES

We do not care about emulation wars

CLOSING NOTES

We do not care about emulation wars

It's always a tradeoff, we chose playability over accuracy (we still aim for accuracy)

END

CLOSING NOTES

We do not care about emulation wars

It's always a tradeoff, we chose playability over accuracy (we still aim for accuracy)

We all have different problems and different solutions

END

CLOSING NOTES

We do not care about emulation wars

It's always a tradeoff, we chose playability over accuracy (we still aim for accuracy)

We all have different problems and different solutions

Come hang out with us, chill and have fun, that's what emulation is all about!

END

CLOSING NOTES

We do not care about emulation wars

It's always a tradeoff, we chose playability over accuracy (we still aim for accuracy)

We all have different problems and different solutions

Come hang out with us, chill and have fun, that's what emulation is all about!

If you don't have fun, why even work on a project that you know you won't ever be paid for?

THANKS

- refraction
- kotjin
- TellowKrinkle
- LightningTerror
- arcum42
- bositman
- jackun
- And others including past members like air and cottonvibes!

Friends:

- sirocyl
- ellie

- refraction
- kotjin
- TellowKrinkle
- LightningTerror
- arcum42
- bositman
- jackun
- And others including past members like air and cottonvibes!

THANKS

Friends:

- sirocyl
- ellie

The PCSX2 Community:

- CK1
- Vaser
- RedDevilus
- pandubz

- refraction
- kotjin
- TellowKrinkle
- LightningTerror
- arcum42
- bositman
- jackun
- And others including past members like air and cottonvibes!

THANKS

Friends:

- sirocyl
- ellie

The PCSX2 Community:

- CK1
- Vaser
- RedDevilus
- pandubz

Our Users

- refraction
- kotjin
- TellowKrinkle
- LightningTerror
- arcum42
- bositman
- jackun
- And others including past members like air and cottonvibes!

THANKS

Friends:

- sirocyl
- ellie

The PCSX2 Community:

- CK1
- Vaser
- RedDevilus
- pandubz

Our Users

...And everyone else I forgot!

- refraction
- kotjin
- TellowKrinkle
- LightningTerror
- arcum42
- bositman
- jackun
- And others including past members like air and cottonvibes!

THANK YOU!

@GovanifY govanify.com gauvain@govanify.com

@PCSX2
 pcsx2.net
info@pcsx2.net