
FROM EMOTION TO EMULATION
CELEBRATING 20 YEARS OF REVERSE ENGINEERING

whoami_

whoami_

GovanifY

whoami_

Gauvain Tanguy
Henri Gabriel

Isidore Roussel-
Tarbouriech

GovanifY

whoami_

Gauvain Tanguy
Henri Gabriel

Isidore Roussel-
Tarbouriech

GovanifY

Core PCSX2 contributor

whoami_

Gauvain Tanguy
Henri Gabriel

Isidore Roussel-
Tarbouriech

GovanifY

Core PCSX2 contributor
CS professor

whoami_

Gauvain Tanguy
Henri Gabriel

Isidore Roussel-
Tarbouriech

GovanifY

Core PCSX2 contributor
CS professor
VG industry contractor

whoami_

Gauvain Tanguy
Henri Gabriel

Isidore Roussel-
Tarbouriech

GovanifY

Core PCSX2 contributor
CS professor
VG industry contractor
Reverse engineer, console hacker

whoarewe_

PCSX2

whoarewe_

A Sony PlayStation
2 Emulator

PCSX2

98.24% of playable games!

whoarewe_

A Sony PlayStation
2 Emulator

PCSX2

98.24% of playable games!
Website's Alexa rank ~40k, most
popular VG emulator I'm aware of

whoarewe_

A Sony PlayStation
2 Emulator

PCSX2

98.24% of playable games!
Website's Alexa rank ~40k, most
popular VG emulator I'm aware of
Very complex software project

whoarewe_

A Sony PlayStation
2 Emulator

PCSX2

98.24% of playable games!
Website's Alexa rank ~40k, most
popular VG emulator I'm aware of
Very complex software project
20 year old project

TECHNICALLY A PS2?

THAT'S STRETCHING IT!

AND A BLACK BOX TO EMULATE

HARDWARE BLACK BOX

How do we break into one?

HARDWARE BLACK BOX

How do we break into one?

HARDWARE

We hack its web browser!
- fail0verflow, circa 2013

BLACK BOX

How do we break into one?

HARDWARE

We hack its web browser!
- fail0verflow, circa 2013

BLACK BOX

https://s3.amazonaws.com/media-p.slid.es/videos/1498678/T4kPqq-W/browser.mp4

How do we break into one?

HARDWARE

We hack its web browser!
- fail0verflow, circa 2013

Us, circa 2002

BLACK BOX

https://s3.amazonaws.com/media-p.slid.es/videos/1498678/T4kPqq-W/browser.mp4

BLACK BOXHARDWARE

BLACK BOX
Let's do it the good old way :)

HARDWARE

BLACK BOX
Let's do it the good old way :)

HARDWARE

BLACK BOX
Let's do it the good old way :)

HARDWARE

I'll explain first how all of this works and then how
we figured it out

Reversible logo!

EE

EE GS

EE GS IOP

EE GS IOP

Syscon

EE GS IOP

Syscon Mechacon

EE GS IOP

Syscon Mechacon

DEV9 serial

EE GS IOP

Syscon Mechacon

DEV9 serial

USB + IEEE 1394

DSP

DSP SPU2

DSP

SSBUS-CON

SPU2

DSP

SSBUS-CON

SPU2BIOS Flash

EE

WHAT IS THE EE

EE

More like what contains the EE

WHAT IS THE EE

EE

More like what contains the EE

A core with 3 co-processors: (COP)

WHAT IS THE EE

EE

COP0: System co-processor

More like what contains the EE

A core with 3 co-processors: (COP)

WHAT IS THE EE

EE

COP0: System co-processor

COP1: A floating point unit (FPU)

More like what contains the EE

A core with 3 co-processors: (COP)

WHAT IS THE EE

EE

COP0: System co-processor

COP1: A floating point unit (FPU)

COP2: Vector Unit 0 Macro Mode (VU0 - Macro)

More like what contains the EE

A core with 3 co-processors: (COP)

WHAT IS THE EE

EE

COP0: System co-processor

COP1: A floating point unit (FPU)

COP2: Vector Unit 0 Macro Mode (VU0 - Macro)

More like what contains the EE

A core with 3 co-processors: (COP)

WHAT IS THE EE

Also partly designed by a chip designer called
coolchips for his Master's thesis, pretty cool!

EE

WHAT IS THE EE

EE

Image Processing Unit (IPU)

WHAT IS THE EE

EE

Image Processing Unit (IPU)
VPU1

WHAT IS THE EE

EE

Image Processing Unit (IPU)
VPU1

VPU0 with VU0 accessible as a COP

WHAT IS THE EE

EE

Image Processing Unit (IPU)
VPU1

VPU0 with VU0 accessible as a COP

GIF/VIF (Graphics/Vector Interface)

WHAT IS THE EE

EE

Image Processing Unit (IPU)
VPU1

VPU0 with VU0 accessible as a COP

GIF/VIF (Graphics/Vector Interface)

i/dCache + ScratchPad (on die memory)

WHAT IS THE EE

EE

Image Processing Unit (IPU)
VPU1

VPU0 with VU0 accessible as a COP

GIF/VIF (Graphics/Vector Interface)

i/dCache + ScratchPad (on die memory)

DMA Controller

WHAT IS THE EE

EE

Image Processing Unit (IPU)
VPU1

VPU0 with VU0 accessible as a COP

GIF/VIF (Graphics/Vector Interface)

i/dCache + ScratchPad (on die memory)

DMA Controller

WHAT IS THE EE

We're only getting started!

III

III IV

III IV

III IV

Only the best of MIPS have been used as we
will see

EE Core - MIPS

EE Core additions

EE - COP0

EE - COP1

EE - COP2

EE - COP2

This is the

 MIPS part!

III IV

DELAY SLOTSPIPELINE

lw t5,0x0(t7) ; t5 = MEM[t7]1
jr t5 ; jump to t52
addiu t5,t5,4 ; t5+=43

DELAY SLOTSPIPELINE

addiu t5,t5,4 ; t5+=4

lw t5,0x0(t7) ; t5 = MEM[t7]1
jr t5 ; jump to t52

3

DELAY SLOTSPIPELINE

jr t5 ; jump to t5
lw t5,0x0(t7) ; t5 = MEM[t7]1

2
addiu t5,t5,4 ; t5+=43

DELAY SLOTSPIPELINE

jr t5 ; jump to t5
lw t5,0x0(t7) ; t5 = MEM[t7]1

2
addiu t5,t5,4 ; t5+=43

???

PIPELINEPIPELINE

PIPELINEPIPELINE

A CPU executes instructions by passing
through multiple steps

PIPELINEPIPELINE

We call those a pipeline

A CPU executes instructions by passing
through multiple steps

PIPELINEPIPELINE

FETCH

We call those a pipeline

A CPU executes instructions by passing
through multiple steps

PIPELINEPIPELINE

FETCH DECODE

We call those a pipeline

A CPU executes instructions by passing
through multiple steps

PIPELINEPIPELINE

FETCH DECODE EXECUTE

We call those a pipeline

A CPU executes instructions by passing
through multiple steps

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

We call those a pipeline

A CPU executes instructions by passing
through multiple steps

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

Not exactly true but it'll work for now

We call those a pipeline

A CPU executes instructions by passing
through multiple steps

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

Not exactly true but it'll work for now

We call those a pipeline

A CPU executes instructions by passing
through multiple steps

The execute step will also be used as memory access

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

Here's an example
FF FF FF FF FF FF FF FF

78 00 b3 ff

FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF

s3 = 00

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

FF

s3 = 00

Here's an example

sd s3,0x78(sp)

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

Here's an example

sd s3, FF

s3 = 00

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

Here's an example

sd s3,

s3 = FF

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

Here's an example

sd s3,

s3 = FF

In reality all of those steps are executed in
parallel on multiple instructions

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

Here's an example

IR-03

s3 = FF

IR-02 IR-01 IR-00

IR = Instruction Register, current instruction

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

Here's an example

IR-03

s3 = FF

IR-02 IR-01 IR-00

IR = Instruction Register, current instruction
What if this is a jump?

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

Here's an example

IR-03

s3 = FF

IR-02

jmp IR-00

IR = Instruction Register, current instruction
What if this is a jump?

This happens after the jump!

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

Here's an example

IR-03

s3 = FF

IR-02

jmp IR-00

IR = Instruction Register, current instruction
What if this is a jump?

This happens after the jump!

Instead of wasting 2 steps, MIPS decided to
execute an instruction out of order to waste 1

PIPELINEPIPELINE

FETCH DECODE EXECUTE WRITE

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

Here's an example

IR-03

s3 = FF

IR-02 jmp IR-00

IR = Instruction Register, current instruction
What if this is a jump?

Instead of wasting 2 steps, MIPS decided to
execute an instruction out of order to waste 1

THE DELAY SLOTS STRIKES BACKPIPELINE

lui $a0, 01
li $v1, FlushCache2
syscall3
li $v1, ResetEE4

THE DELAY SLOTS STRIKES BACKPIPELINE

li $v1, FlushCache
lui $a0, 01

2
syscall3
li $v1, ResetEE4

THE DELAY SLOTS STRIKES BACKPIPELINE

syscall

lui $a0, 01
li $v1, FlushCache2

3
li $v1, ResetEE4

THE DELAY SLOTS STRIKES BACKPIPELINE

li $v1, ResetEE

lui $a0, 01
li $v1, FlushCache2
syscall3

4

THE DELAY SLOTS STRIKES BACKPIPELINE

li $v1, ResetEE

lui $a0, 01
li $v1, FlushCache2
syscall3

4

¿¿¿

INTERRUPTSPIPELINE

INTERRUPTSPIPELINE

syscall is like an interrupt instruction

INTERRUPTSPIPELINE

syscall is like an interrupt instruction

The CPU switches to kernel mode and drops
the entire pipeline

INTERRUPTSPIPELINE

syscall is like an interrupt instruction

The CPU switches to kernel mode and drops
the entire pipeline

Everything gets fetched back again after the
syscall is done

COP0COP

COP0COP

Handles multiple system things:

COP0COP

Handles multiple system things:

Memory Management

COP0COP

Handles multiple system things:

Memory Management
Exceptions

COP0COP

Handles multiple system things:

Memory Management
Exceptions
Debugging

COP0COP

Handles multiple system things:

Memory Management
Exceptions
Debugging
Cache

COP0COP

Handles multiple system things:

Memory Management
Exceptions
Debugging
Cache
Interrupts! (Nice transition)

COP1COP

COP1
A Floating Point Unit (FPU)

COP

COP1COP

A Floating Point Unit (FPU) 0.3921230137348175048828125

 0x3ec8c459(this thing)

COP1COP

A Floating Point Unit (FPU)

Not IEEE 754 compliant!!

0.3921230137348175048828125

 0x3ec8c459(this thing)

COP1COP

A Floating Point Unit (FPU)

Not IEEE 754 compliant!!

Relevant list of features not implemented:

0.3921230137348175048828125

 0x3ec8c459(this thing)

COP1COP

A Floating Point Unit (FPU)

Not IEEE 754 compliant!!

Relevant list of features not implemented:

NaN

0.3921230137348175048828125

 0x3ec8c459(this thing)

COP1COP

A Floating Point Unit (FPU)

Not IEEE 754 compliant!!

Relevant list of features not implemented:

NaN
Nearest roundings

0.3921230137348175048828125

 0x3ec8c459(this thing)

COP1COP

A Floating Point Unit (FPU)

Not IEEE 754 compliant!!

Relevant list of features not implemented:

NaN
Nearest roundings
+/- ∞

0.3921230137348175048828125

 0x3ec8c459(this thing)

COP1COP

A Floating Point Unit (FPU)

Not IEEE 754 compliant!!

Relevant list of features not implemented:

NaN
Nearest roundings
+/- ∞
Exceptions

0.3921230137348175048828125

 0x3ec8c459(this thing)

COP1COP

A Floating Point Unit (FPU)

Not IEEE 754 compliant!!

Relevant list of features not implemented:

NaN
Nearest roundings
+/- ∞
Exceptions
Denormalized numbers

0.3921230137348175048828125

 0x3ec8c459(this thing)

COP1COP

A Floating Point Unit (FPU)

Not IEEE 754 compliant!!

Relevant list of features not implemented:

NaN
Nearest roundings
+/- ∞
Exceptions
Denormalized numbers

Result: an absolute pain in the ass to emulate

0.3921230137348175048828125

 0x3ec8c459(this thing)

VPUVPU

VPUVPU

Two of them, composed of two things:

A Vector Unit (VU)

VPUVPU

Two of them, composed of two things:

A Vector Unit (VU)
A Vector Interface (VIF)

VPUVPU

Two of them, composed of two things:

A Vector Unit (VU)
A Vector Interface (VIF)

VPU0 can either work as a COP or as a microprocessor

VPUVPU

Two of them, composed of two things:

A Vector Unit (VU)
A Vector Interface (VIF)

VPU0 can either work as a COP or as a microprocessor

If it runs in COP(macro) mode, it will act as a superset of
instructions for the EE core

VPUVPU

Two of them, composed of two things:

A Vector Unit (VU)
A Vector Interface (VIF)

VPU0 can either work as a COP or as a microprocessor

If it runs in COP(macro) mode, it will act as a superset of
instructions for the EE core

Otherwise it will execute instructions in parallel fed in a
microprogram by the EE

VPUVPU

VPUVPU

VPU1 can transfer directly to the GS memory by using 2
methods:

VPUVPU

VPU1 can transfer directly to the GS memory by using 2
methods:

XGKICK (Path 1)

VPUVPU

VPU1 can transfer directly to the GS memory by using 2
methods:

XGKICK (Path 1)
VIF1 (Path 2)

VPUVPU

VPU1 can transfer directly to the GS memory by using 2
methods:

XGKICK (Path 1)
VIF1 (Path 2)

The EE and the VU1 uses a third method to transfer data
to the GPU, the GIF

VPUVPU

VPU1 can transfer directly to the GS memory by using 2
methods:

XGKICK (Path 1)
VIF1 (Path 2)

The EE and the VU1 uses a third method to transfer data
to the GPU, the GIF

NB: Path 1 and Path 2 also use the GIF but have higher
priority, confusing yet?

VPU - EXAMPLEVPU

VPU - EXAMPLEVPU

The EE sends the model
data to the VIF

VPU - EXAMPLEVPU

.align 0
;test.dae_mp1_pkt1.obj
;Automatically generated by kh2vif
;kh2vif by GovanifY ~ 2017
stcycl 01, 01

unpack[r] V4_32, 0, *
.int 1, 0, 0, 0
.int 36, 4, 54, 56
.int 0, 0, 0, 0
.int 14, 40, 0, 5
.EndUnpack

stcycl 01, 01

unpack[r] V2_16, 4, *
.short 2048, 0
.short 1024, 1024
.short 1024, 0
.short 1024, 3071
.short 2048, 2048
.short 2048, 3071
.short 3071, 2048

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

The EE sends the model
data to the VIF

VPU - EXAMPLEVPU

.align 0
;test.dae_mp1_pkt1.obj
;Automatically generated by kh2vif
;kh2vif by GovanifY ~ 2017
stcycl 01, 01

unpack[r] V4_32, 0, *
.int 1, 0, 0, 0
.int 36, 4, 54, 56
.int 0, 0, 0, 0
.int 14, 40, 0, 5
.EndUnpack

stcycl 01, 01

unpack[r] V2_16, 4, *
.short 2048, 0
.short 1024, 1024
.short 1024, 0
.short 1024, 3071
.short 2048, 2048
.short 2048, 3071
.short 3071, 2048

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

VIF1

The EE sends the model
data to the VIF

The VIF1 executes the unpack commands
and writes the data to its memory

VPU - EXAMPLEVPU

.align 0
;test.dae_mp1_pkt1.obj
;Automatically generated by kh2vif
;kh2vif by GovanifY ~ 2017
stcycl 01, 01

unpack[r] V4_32, 0, *
.int 1, 0, 0, 0
.int 36, 4, 54, 56
.int 0, 0, 0, 0
.int 14, 40, 0, 5
.EndUnpack

stcycl 01, 01

unpack[r] V2_16, 4, *
.short 2048, 0
.short 1024, 1024
.short 1024, 0
.short 1024, 3071
.short 2048, 2048
.short 2048, 3071
.short 3071, 2048

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

VU1

VIF1

The EE sends the model
data to the VIF

The VIF1 executes the unpack commands
and writes the data to its memory

The VU1 transforms
the data and calculate

relative positions

VPU - EXAMPLEVPU

.align 0
;test.dae_mp1_pkt1.obj
;Automatically generated by kh2vif
;kh2vif by GovanifY ~ 2017
stcycl 01, 01

unpack[r] V4_32, 0, *
.int 1, 0, 0, 0
.int 36, 4, 54, 56
.int 0, 0, 0, 0
.int 14, 40, 0, 5
.EndUnpack

stcycl 01, 01

unpack[r] V2_16, 4, *
.short 2048, 0
.short 1024, 1024
.short 1024, 0
.short 1024, 3071
.short 2048, 2048
.short 2048, 3071
.short 3071, 2048

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

VU1

VIF1

The EE sends the model
data to the VIF

The VIF1 executes the unpack commands
and writes the data to its memory

The VU1 transforms
the data and calculate

relative positions

GS

The VIF1 sends the final
data to the GS for

rasterization

SPU2SPU

SPU2
Based on the PS1 SPU, but with 2 cores!

SPU

SPU2
Based on the PS1 SPU, but with 2 cores!

SPU

CORE 0
24 VOICES

CORE 1
24 VOICES

SPU2
Based on the PS1 SPU, but with 2 cores!

SPU

CORE 0
24 VOICES

CORE 1
24 VOICES

Has customizable IRQ!!

SPU2
Based on the PS1 SPU, but with 2 cores!

SPU

CORE 0
24 VOICES

CORE 1
24 VOICES

Has customizable IRQ!!

Games use them as highly precise interrupts
by setting an IRQ at a write-back address

used during the mixing stage

SPU2
Based on the PS1 SPU, but with 2 cores!

SPU

CORE 0
24 VOICES

CORE 1
24 VOICES

Has customizable IRQ!!

Games use them as highly precise interrupts
by setting an IRQ at a write-back address

used during the mixing stage

The mixer has a sample rate of 48kHZ in PS2
mode, 44.1 in PS1 compatible mode

SPU2SPU

SPU2
Also has a Schroeder Reverberator!

SPU

Uses 4 parallel comb filters in a rotating buffer

SPU2
Also has a Schroeder Reverberator!

SPU

Uses 4 parallel comb filters in a rotating buffer

Adds gain, then mixes back with the original input,
rewriting the rotating buffer in the process

SPU2
Also has a Schroeder Reverberator!

SPU

Uses 4 parallel comb filters in a rotating buffer

Adds gain, then mixes back with the original input,
rewriting the rotating buffer in the process

WHAT IS THE IOP
IOP

WHAT IS THE IOP
Good question! It's a MIPS-based processor...

IOP

WHAT IS THE IOP
Good question! It's a MIPS-based processor...

IOP

... or PowerPC.

WHAT IS THE IOP
Good question! It's a MIPS-based processor...

IOP

wait...WHAT?

... or PowerPC.

WHAT IS THE IOP
Good question! It's a MIPS-based processor...

IOP

wait...WHAT?

... Let's ignore that for now.

... or PowerPC.

WHAT IS THE IOP
IOP

... Let's ignore that for now.

WHAT IS THE IOP
Good question! It's a MIPS-based processor...

IOP

... Let's ignore that for now.

It is the PS1 CPU, just repurposed in order to
handle all the I/O, devices and drivers in the PS2.

WHAT IS THE IOP
Good question! It's a MIPS-based processor...

IOP

... Let's ignore that for now.

The EE and the IOP communicate through the
Subsystem Interface (SIF).

It is the PS1 CPU, just repurposed in order to
handle all the I/O, devices and drivers in the PS2.

I

I

IOP

COP0 COP2

IOP

WHAT IS THE IOP

IOP

A MIPS I "compatible" CPUs with 2 COP

WHAT IS THE IOP

IOP

COP0: System Management

A MIPS I "compatible" CPUs with 2 COP

WHAT IS THE IOP

IOP

COP0: System Management

COP2: Geometry Transformation Engine (GTE)

A MIPS I "compatible" CPUs with 2 COP

WHAT IS THE IOP

IOP

COP0: System Management

COP1: ???

COP2: Geometry Transformation Engine (GTE)

A MIPS I "compatible" CPUs with 2 COP

WHAT IS THE IOP

IOP

COP0: System Management

COP1: ???

COP2: Geometry Transformation Engine (GTE)

A MIPS I "compatible" CPUs with 2 COP

WHAT IS THE IOP

Sony doesn't know how to count

IOP

IOP

ONE LAST THING

IOP

ONE LAST THING

PS1: Bring out your own f---ing chip and
system libraries

DECKARD

DECKARD

Meet PS2 Slim hardware!

DECKARD

Slim, right?

Meet PS2 Slim hardware!

DECKARD

Slim, right? Wanna know why?

Meet PS2 Slim hardware!

DECKARD

DECKARD

DECKARD
A PS2 ON-A-CHIP IS NOT ENOUGH

DECKARD
A PS2 ON-A-CHIP IS NOT ENOUGH

Meet deckard!

DECKARD
A PS2 ON-A-CHIP IS NOT ENOUGH

Meet deckard!

A PowerPC based replacement for the IOP

DECKARD
A PS2 ON-A-CHIP IS NOT ENOUGH

Meet deckard!

A PowerPC based replacement for the IOP

Emulates PS1 features through software

DECKARD
A PS2 ON-A-CHIP IS NOT ENOUGH

Meet deckard!

A PowerPC based replacement for the IOP

Emulates PS1 features through software

Fortunately we don't care about it, we are
writing an emulator, not trying to emulate the

emulator emulating the console :D

DRM COPY PROTECTION

DRM COPY PROTECTION
About time we talk about it

DRM COPY PROTECTION
About time we talk about it

Essentially a mod of PS1's copy protection

DRM COPY PROTECTION
About time we talk about it

Essentially a mod of PS1's copy protection

The PS1 replaced CD's ATIP (which is a
sinusoidal constant of ~22kHZ) by their own

region specific constant

DRM COPY PROTECTION
About time we talk about it

Essentially a mod of PS1's copy protection

The PS1 replaced CD's ATIP (which is a
sinusoidal constant of ~22kHZ) by their own

region specific constant

The ATIP is normally used by players to
synchronize their laser's timing

DRM COPY PROTECTION
About time we talk about it

Essentially a mod of PS1's copy protection

The PS1 replaced CD's ATIP (which is a
sinusoidal constant of ~22kHZ) by their own

region specific constant

The ATIP is normally used by players to
synchronize their laser's timing

Data can also be stored by modulating the
ATIP +/- 1kHZ!

DRM COPY PROTECTION

The ATIP is around
there

DRM COPY PROTECTION

DRM COPY PROTECTION
The PS2 instead stores the Title ID of the disc

in it

DRM COPY PROTECTION
The PS2 instead stores the Title ID of the disc

in it

Mechacon then derives an encryption key out
of the Title ID which will be used to decrypt

and verify the disc

DRM COPY PROTECTION
The PS2 instead stores the Title ID of the disc

in it

Mechacon then derives an encryption key out
of the Title ID which will be used to decrypt

and verify the disc

It will then proceed to decrypt the
"PlayStation 2" logo you see at each boot once

sent to it

DRM COPY PROTECTION
The PS2 instead stores the Title ID of the disc

in it

Mechacon then derives an encryption key out
of the Title ID which will be used to decrypt

and verify the disc

It will then proceed to decrypt the
"PlayStation 2" logo you see at each boot once

sent to it

...But we can completely ignore this by
skipping the verification logic in the BIOS!

DRM COPY PROTECTION

DRM COPY PROTECTION
Sony tries to make this harder by making it

harder to power on the mechacon

DRM COPY PROTECTION
Sony tries to make this harder by making it

harder to power on the mechacon

...forgetting you could just dump the BIOS out
of your flash chip and reverse engineer it

DRM COPY PROTECTION
Sony tries to make this harder by making it

harder to power on the mechacon

...forgetting you could just dump the BIOS out
of your flash chip and reverse engineer it

......and that the bootloader verifies the
integrity of your BIOS with a simple CRC

which is prone to collisions

DRM COPY PROTECTION
Sony tries to make this harder by making it

harder to power on the mechacon

...forgetting you could just dump the BIOS out
of your flash chip and reverse engineer it

......and that the bootloader verifies the
integrity of your BIOS with a simple CRC

which is prone to collisions

The mechacon is essentially a security
processor that you can completely ignore and

useless in functionality

void mechaconAuth()
{
 int k;

 while (cdvdRead(0x17) != 0x40) {;}

 cdvdWrite(0x17, 0);

 cdvdWrite(0x16, 0x80);
 while (cdvdRead(0x16) != 0x80) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x81);
 while (cdvdRead(0x16) != 0x81) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

void mechaconAuth()
{
 int k;

 while (cdvdRead(0x17) != 0x40) {;}

 cdvdWrite(0x17, 0);

 cdvdWrite(0x16, 0x80);
 while (cdvdRead(0x16) != 0x80) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x81);
 while (cdvdRead(0x16) != 0x81) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x82);
 while (cdvdRead(0x16) != 0x82) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x83);
 while (cdvdRead(0x16) != 0x83) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x84);
 while (cdvdRead(0x16) != 0x84) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x85);
 while (cdvdRead(0x16) != 0x85) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x86);
 while (cdvdRead(0x16) != 0x86) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x87);
 while (cdvdRead(0x16) != 0x87) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x88);
 while (cdvdRead(0x16) != 0x88) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x17, 0x08);

 cdvdWrite(0x16, 0x80);
 while (cdvdRead(0x16) != 0x80) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x17, 0x08);

 cdvdWrite(0x16, 0x81);
 while (cdvdRead(0x16) != 0x81) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x82);
 while (cdvdRead(0x16) != 0x82) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x83);
 while (cdvdRead(0x16) != 0x83) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x84);
 while (cdvdRead(0x16) != 0x84) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x85);
 while (cdvdRead(0x16) != 0x85) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x86);
 while (cdvdRead(0x16) != 0x86) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x87);
 while (cdvdRead(0x16) != 0x87) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x88);
 while (cdvdRead(0x16) != 0x88) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

void mechaconAuth()
{
 int k;

 while (cdvdRead(0x17) != 0x40) {;}

 cdvdWrite(0x17, 0);

 cdvdWrite(0x16, 0x80);
 while (cdvdRead(0x16) != 0x80) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x81);
 while (cdvdRead(0x16) != 0x81) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x82);
 while (cdvdRead(0x16) != 0x82) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x83);
 while (cdvdRead(0x16) != 0x83) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x84);
 while (cdvdRead(0x16) != 0x84) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x85);
 while (cdvdRead(0x16) != 0x85) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x86);
 while (cdvdRead(0x16) != 0x86) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x87);
 while (cdvdRead(0x16) != 0x87) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x88);
 while (cdvdRead(0x16) != 0x88) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x17, 0x08);

 cdvdWrite(0x16, 0x80);
 while (cdvdRead(0x16) != 0x80) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x17, 0x08);

 cdvdWrite(0x16, 0x81);
 while (cdvdRead(0x16) != 0x81) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x82);
 while (cdvdRead(0x16) != 0x82) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x83);
 while (cdvdRead(0x16) != 0x83) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x84);
 while (cdvdRead(0x16) != 0x84) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x85);
 while (cdvdRead(0x16) != 0x85) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x86);
 while (cdvdRead(0x16) != 0x86) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x87);
 while (cdvdRead(0x16) != 0x87) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x88);
 while (cdvdRead(0x16) != 0x88) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

Good thing we can just ignore it when emulating!

void mechaconAuth()
{
 int k;

 while (cdvdRead(0x17) != 0x40) {;}

 cdvdWrite(0x17, 0);

 cdvdWrite(0x16, 0x80);
 while (cdvdRead(0x16) != 0x80) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x81);
 while (cdvdRead(0x16) != 0x81) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x82);
 while (cdvdRead(0x16) != 0x82) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x83);
 while (cdvdRead(0x16) != 0x83) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x84);
 while (cdvdRead(0x16) != 0x84) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x85);
 while (cdvdRead(0x16) != 0x85) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x86);
 while (cdvdRead(0x16) != 0x86) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x87);
 while (cdvdRead(0x16) != 0x87) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x88);
 while (cdvdRead(0x16) != 0x88) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x17, 0x08);

 cdvdWrite(0x16, 0x80);
 while (cdvdRead(0x16) != 0x80) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x17, 0x08);

 cdvdWrite(0x16, 0x81);
 while (cdvdRead(0x16) != 0x81) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x82);
 while (cdvdRead(0x16) != 0x82) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x83);
 while (cdvdRead(0x16) != 0x83) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x84);
 while (cdvdRead(0x16) != 0x84) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x85);
 while (cdvdRead(0x16) != 0x85) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x86);
 while (cdvdRead(0x16) != 0x86) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x87);
 while (cdvdRead(0x16) != 0x87) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x88);
 while (cdvdRead(0x16) != 0x88) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

Good thing we can just ignore it when emulating!

case 0x80: // secrman: __mechacon_auth_0x80
 SetResultSize(1); //in:1
 cdvd.mg_datatype = 0; //data
 cdvd.Result[0] = 0;
 break;

case 0x81: // secrman: __mechacon_auth_0x81
 SetResultSize(1); //in:1
 cdvd.mg_datatype = 0; //data
 cdvd.Result[0] = 0;
 break;

case 0x82: // secrman: __mechacon_auth_0x82
 SetResultSize(1); //in:16
 cdvd.Result[0] = 0;
 break;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

void mechaconAuth()
{
 int k;

 while (cdvdRead(0x17) != 0x40) {;}

 cdvdWrite(0x17, 0);

 cdvdWrite(0x16, 0x80);
 while (cdvdRead(0x16) != 0x80) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x81);
 while (cdvdRead(0x16) != 0x81) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x82);
 while (cdvdRead(0x16) != 0x82) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x83);
 while (cdvdRead(0x16) != 0x83) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x84);
 while (cdvdRead(0x16) != 0x84) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x85);
 while (cdvdRead(0x16) != 0x85) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x86);
 while (cdvdRead(0x16) != 0x86) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x87);
 while (cdvdRead(0x16) != 0x87) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x88);
 while (cdvdRead(0x16) != 0x88) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x17, 0x08);

 cdvdWrite(0x16, 0x80);
 while (cdvdRead(0x16) != 0x80) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x17, 0x08);

 cdvdWrite(0x16, 0x81);
 while (cdvdRead(0x16) != 0x81) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x82);
 while (cdvdRead(0x16) != 0x82) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x83);
 while (cdvdRead(0x16) != 0x83) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x84);
 while (cdvdRead(0x16) != 0x84) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x85);
 while (cdvdRead(0x16) != 0x85) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 16; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x86);
 while (cdvdRead(0x16) != 0x86) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 for (k = 0; k < 8; k++)
 {
 cdvdWrite(0x17, 0xff);
 }

 cdvdWrite(0x16, 0x87);
 while (cdvdRead(0x16) != 0x87) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x8f);
 while (cdvdRead(0x16) != 0x8f) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }

 while (cdvdRead(0x17) != 0x40) {;}
 cdvdWrite(0x16, 0x88);
 while (cdvdRead(0x16) != 0x88) {;}
 while (cdvdRead(0x17) != 0x40)
 {
 cdvdRead(0x18);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

Good thing we can just ignore it when emulating!

case 0x80: // secrman: __mechacon_auth_0x80
 SetResultSize(1); //in:1
 cdvd.mg_datatype = 0; //data
 cdvd.Result[0] = 0;
 break;

case 0x81: // secrman: __mechacon_auth_0x81
 SetResultSize(1); //in:1
 cdvd.mg_datatype = 0; //data
 cdvd.Result[0] = 0;
 break;

case 0x82: // secrman: __mechacon_auth_0x82
 SetResultSize(1); //in:16
 cdvd.Result[0] = 0;
 break;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Just have to make sure to return the nice values for
the BIOS

DRM

COPY PROTECTION

DRM

What would be Sony's copy protection
without trademark infringement?

COPY PROTECTION

DRM

What would be Sony's copy protection
without trademark infringement?

COPY PROTECTION

DRM

What would be Sony's copy protection
without trademark infringement?

COPY PROTECTION

DRM

What would be Sony's copy protection
without trademark infringement?

COPY PROTECTION

// letters = SLES, numbers = 54232
key[0] = ((numbers & 0x1F) << 3) | ((0x0FFFFFFF & letters) >> 25);
key[1] = (numbers >> 10) | ((0x0FFFFFFF & letters) << 7);
key[2] = ((numbers & 0x3E0) >> 2) | 0x04;

1
2
3
4

DRM

What would be Sony's copy protection
without trademark infringement?

COPY PROTECTION

for(int i=0; i<12*2048; i++)
{
 logo[i] = ((logo[i]<<5)|(logo[i]>>3)) ^ magicNum;
}

1
2
3
4

// letters = SLES, numbers = 54232
key[0] = ((numbers & 0x1F) << 3) | ((0x0FFFFFFF & letters) >> 25);
key[1] = (numbers >> 10) | ((0x0FFFFFFF & letters) << 7);
key[2] = ((numbers & 0x3E0) >> 2) | 0x04;

1
2
3
4

DRM

What would be Sony's copy protection
without trademark infringement?

COPY PROTECTION

for(int i=0; i<12*2048; i++)
{
 logo[i] = ((logo[i]<<5)|(logo[i]>>3)) ^ magicNum;
}

1
2
3
4

// letters = SLES, numbers = 54232
key[0] = ((numbers & 0x1F) << 3) | ((0x0FFFFFFF & letters) >> 25);
key[1] = (numbers >> 10) | ((0x0FFFFFFF & letters) << 7);
key[2] = ((numbers & 0x3E0) >> 2) | 0x04;

1
2
3
4

Also differs between regions

DRM

COPY PROTECTION

11101010

DRM

COPY PROTECTION

for(int i=0; i<12*2048; i++)
{
 logo[i] = ((logo[i]<<5)|(logo[i]>>3)) ^ magicNum;
}

1
2
3
4

11101010

DRM

COPY PROTECTION

for(int i=0; i<12*2048; i++)
{
 logo[i] = ((logo[i]<<5)|(logo[i]>>3)) ^ magicNum;
}

1
2
3
4

11101010

DRM

COPY PROTECTION

for(int i=0; i<12*2048; i++)
{
 logo[i] = ((logo[i]<<5)|(logo[i]>>3)) ^ magicNum;
}

1
2
3
4

11101010

11110000
^

DRM

COPY PROTECTION

for(int i=0; i<12*2048; i++)
{
 logo[i] = ((logo[i]<<5)|(logo[i]>>3)) ^ magicNum;
}

1
2
3
4

11101010

11110000
^

=

00011010

DRM

COPY PROTECTION

DRM

COPY PROTECTION

The key can be either calculated from the
Title ID

DRM

COPY PROTECTION

The key can be either calculated from the
Title ID

...or guessed by reading any 00 encrypted byte

DRM

COPY PROTECTION

The key can be either calculated from the
Title ID

...or guessed by reading any 00 encrypted byte

00 ^ XX = XX

DRM

COPY PROTECTION

The key can be either calculated from the
Title ID

...or guessed by reading any 00 encrypted byte

00 ^ XX = XX

The first byte of the logo is always 00

DRM

COPY PROTECTION

The key can be either calculated from the
Title ID

...or guessed by reading any 00 encrypted byte

00 ^ XX = XX

The first byte of the logo is always 00

The 12 first sectors are dedicated to this, The
next 2 are for Master Drives, and the last 2

are unused

DRM

COPY PROTECTION

DRM

COPY PROTECTION

Unhappy of having encrypted content which you can decrypt
by simply reading its first byte Sony added a more convoluted

protection mechanism called MagicGate to secure its
memory cards

DRM

COPY PROTECTION

Unhappy of having encrypted content which you can decrypt
by simply reading its first byte Sony added a more convoluted

protection mechanism called MagicGate to secure its
memory cards

You can obviously ask nicely the mechacon to
sign and access memory cards for you, but

that's not fun

DRM

MAGICGATE

DRM

MAGICGATE
MagicGate uses DES

DRM

MAGICGATE
MagicGate uses DES

DRM

MAGICGATE
MagicGate uses DES

Oh boy

DRM

MAGICGATE
MagicGate uses 3DES

Oh boy

DRM

MAGICGATE
MagicGate uses 3DES

Oh boy

DRM

MAGICGATE
MagicGate uses 3DES

...but with only 2 keys of security

DRM MAGICGATE

DRM MAGICGATE
Their 3DES implementation changes the key schedule slightly

DRM MAGICGATE
Their 3DES implementation changes the key schedule slightly

They use it in CBC mode as a challenge reply nonce based
cryptosystem

DRM MAGICGATE
Their 3DES implementation changes the key schedule slightly

They use it in CBC mode as a challenge reply nonce based
cryptosystem

1. We ask the memory card for some IV and its identifier

DRM MAGICGATE
Their 3DES implementation changes the key schedule slightly

They use it in CBC mode as a challenge reply nonce based
cryptosystem

1. We ask the memory card for some IV and its identifier
2. We derive a unique key based on this

DRM MAGICGATE
Their 3DES implementation changes the key schedule slightly

They use it in CBC mode as a challenge reply nonce based
cryptosystem

1. We ask the memory card for some IV and its identifier
2. We derive a unique key based on this
3. We ask the memory card for a nonce it generated

DRM MAGICGATE
Their 3DES implementation changes the key schedule slightly

They use it in CBC mode as a challenge reply nonce based
cryptosystem

1. We ask the memory card for some IV and its identifier
2. We derive a unique key based on this
3. We ask the memory card for a nonce it generated
4. We generate our nonce

DRM MAGICGATE
Their 3DES implementation changes the key schedule slightly

They use it in CBC mode as a challenge reply nonce based
cryptosystem

1. We ask the memory card for some IV and its identifier
2. We derive a unique key based on this
3. We ask the memory card for a nonce it generated
4. We generate our nonce
5. We generate a challenge: OurNonce|CardNonce|CardIV

encrypted with the Unique Key we calculated and using a
built-in IV

DRM MAGICGATE
Their 3DES implementation changes the key schedule slightly

They use it in CBC mode as a challenge reply nonce based
cryptosystem

1. We ask the memory card for some IV and its identifier
2. We derive a unique key based on this
3. We ask the memory card for a nonce it generated
4. We generate our nonce
5. We generate a challenge: OurNonce|CardNonce|CardIV

encrypted with the Unique Key we calculated and using a
built-in IV

6. The memory card decrypts our challenge and rebuilds
another: CardNonce|MechaNonce|SessionKey, using the
IV of step 5

DRM MAGICGATE
Their 3DES implementation changes the key schedule slightly

They use it in CBC mode as a challenge reply nonce based
cryptosystem

1. We ask the memory card for some IV and its identifier
2. We derive a unique key based on this
3. We ask the memory card for a nonce it generated
4. We generate our nonce
5. We generate a challenge: OurNonce|CardNonce|CardIV

encrypted with the Unique Key we calculated and using a
built-in IV

6. The memory card decrypts our challenge and rebuilds
another: CardNonce|MechaNonce|SessionKey, using the
IV of step 5

7. The SessionKey will now be used as a Key Encryption Key

DRM MAGICGATE

DRM MAGICGATE
This implementation has multiple issues:

We can pull off chosen plaintext attacks by MITMing the
mechacon and the memory card

DRM MAGICGATE
This implementation has multiple issues:

We can pull off chosen plaintext attacks by MITMing the
mechacon and the memory card
The IV used for the challenge is baked in and will never
change.

DRM MAGICGATE
This implementation has multiple issues:

We can pull off chosen plaintext attacks by MITMing the
mechacon and the memory card
The IV used for the challenge is baked in and will never
change.
We can force Mechacon to keep reusing the same
"unique" encryption key by resending the same CardIV
and CardID

DRM MAGICGATE
This implementation has multiple issues:

We can pull off chosen plaintext attacks by MITMing the
mechacon and the memory card
The IV used for the challenge is baked in and will never
change.
We can force Mechacon to keep reusing the same
"unique" encryption key by resending the same CardIV
and CardID
We can arbitrarily replace CardID and CardIV in any
communication while keeping the same unique key(!)

DRM MAGICGATE
This implementation has multiple issues:

We can pull off chosen plaintext attacks by MITMing the
mechacon and the memory card
The IV used for the challenge is baked in and will never
change.
We can force Mechacon to keep reusing the same
"unique" encryption key by resending the same CardIV
and CardID
We can arbitrarily replace CardID and CardIV in any
communication while keeping the same unique key(!)
...not sensible to replay attacks, unlikely to be an oracle

DRM MAGICGATE
This implementation has multiple issues:

We can pull off chosen plaintext attacks by MITMing the
mechacon and the memory card
The IV used for the challenge is baked in and will never
change.
We can force Mechacon to keep reusing the same
"unique" encryption key by resending the same CardIV
and CardID
We can arbitrarily replace CardID and CardIV in any
communication while keeping the same unique key(!)
...not sensible to replay attacks, unlikely to be an oracle

Let's be smarter!

DRM MAGICGATE

DRM MAGICGATE
Mechacon challenge:

DRM MAGICGATE

MechaNonce

⊕IV

3DES

EMechaNonce

CardNonce

⊕

3DES

ECardNonce

CardIV

⊕

3DES

ECardIV

Mechacon challenge:

DRM MAGICGATE

MechaNonce

⊕IV

3DES

EMechaNonce

CardNonce

⊕

3DES

ECardNonce

CardIV

⊕

3DES

ECardIV

Mechacon challenge:

E =CardIv E(CardIv ⊕ E ,K)CardNonce

DRM MAGICGATE

MechaNonce

⊕IV

3DES

EMechaNonce

CardNonce

⊕

3DES

ECardNonce

CardIV

⊕

3DES

ECardIV

Mechacon challenge:

E =CardIv E(CardIv ⊕ E ,K)CardNonce

We can always predict everything but K so we can generate infinitely many known plaintext!

DRM MAGICGATE

DRM MAGICGATE
We can thus pull off a Linear Cryptanalysis attack on

DES with our known plaintext dictionary

DRM MAGICGATE
We can thus pull off a Linear Cryptanalysis attack on

DES with our known plaintext dictionary

Matsui's attack can break it using 2^47 plaintext and was
published in 1993. MagicGate was published in 1999.

DRM MAGICGATE
We can thus pull off a Linear Cryptanalysis attack on

DES with our known plaintext dictionary

Matsui's attack can break it using 2^47 plaintext and was
published in 1993. MagicGate was published in 1999.

Biryukov et al's attack only requires 2^41 and was
released in 2004.

DRM MAGICGATE
We can thus pull off a Linear Cryptanalysis attack on

DES with our known plaintext dictionary

Matsui's attack can break it using 2^47 plaintext and was
published in 1993. MagicGate was published in 1999.

On Multiple Linear Approximations

hint: sci-hub
https://doi.org/10.1007/978-3-540-28628-8_1

Biryukov et al's attack only requires 2^41 and was
released in 2004.

https://doi.org/10.1007/978-3-540-28628-8_1

DRM MAGICGATE
We can thus pull off a Linear Cryptanalysis attack on

DES with our known plaintext dictionary

Matsui's attack can break it using 2^47 plaintext and was
published in 1993. MagicGate was published in 1999.

On Multiple Linear Approximations

hint: sci-hub
https://doi.org/10.1007/978-3-540-28628-8_1

Biryukov et al's attack only requires 2^41 and was
released in 2004.

But this only applies to DES!

https://doi.org/10.1007/978-3-540-28628-8_1

DRM MAGICGATE

DRM MAGICGATE
Sony uses 3DES with a 2 key scheme, using the two

keys on three encryption steps in this order:

DRM MAGICGATE
Sony uses 3DES with a 2 key scheme, using the two

keys on three encryption steps in this order:

k , k , k1 2 1

DRM MAGICGATE
Sony uses 3DES with a 2 key scheme, using the two

keys on three encryption steps in this order:

An incorrect order could make a meet-in-the-middle
attack possible, but unfortunately for us no can do here

k , k , k1 2 1

DRM MAGICGATE
Sony uses 3DES with a 2 key scheme, using the two

keys on three encryption steps in this order:

Van Oorschot's attack based on Merkle is a known
plaintext attack on 3DES with two triples which is now

probably achievable by a dedicated adversary

An incorrect order could make a meet-in-the-middle
attack possible, but unfortunately for us no can do here

k , k , k1 2 1

DRM MAGICGATE
Sony uses 3DES with a 2 key scheme, using the two

keys on three encryption steps in this order:

Van Oorschot's attack based on Merkle is a known
plaintext attack on 3DES with two triples which is now

probably achievable by a dedicated adversary

A known-plaintext attack on two-key triple encryption

https://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.66.6575

An incorrect order could make a meet-in-the-middle
attack possible, but unfortunately for us no can do here

k , k , k1 2 1

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.66.6575

DRM MAGICGATE

DRM MAGICGATE
There are a few other details like Content Keys being
derived after that, or the Memory Card replacing the
Session Key by its own Storage Key once stored, but

they are all vulnerable to this same attack.

DRM MAGICGATE
There are a few other details like Content Keys being
derived after that, or the Memory Card replacing the
Session Key by its own Storage Key once stored, but

they are all vulnerable to this same attack.

In the end we can extract all keys from mechacon
blindly without using nitric acid!

Although I am unsure which is costlier nowadays

DRM MAGICGATE
There are a few other details like Content Keys being
derived after that, or the Memory Card replacing the
Session Key by its own Storage Key once stored, but

they are all vulnerable to this same attack.

In the end we can extract all keys from mechacon
blindly without using nitric acid!

Although I am unsure which is costlier nowadays

...Or we can reverse engineer Sony's PS2 emulator
which also includes the entire MagicGate algorithm to

work with memory card adaptors

DRM MAGICGATE
There are a few other details like Content Keys being
derived after that, or the Memory Card replacing the
Session Key by its own Storage Key once stored, but

they are all vulnerable to this same attack.

In the end we can extract all keys from mechacon
blindly without using nitric acid!

Although I am unsure which is costlier nowadays

...Or we can reverse engineer Sony's PS2 emulator
which also includes the entire MagicGate algorithm to

work with memory card adaptors

Oops²

DRM

MAGICGATE

DRM

MAGICGATE
Sony, here are some book recommendations if

you want to study cryptography/DES a bit more

DRM

MAGICGATE
Sony, here are some book recommendations if

you want to study cryptography/DES a bit more

Applied Cryptography, Bruce Schneier

DRM

MAGICGATE
Sony, here are some book recommendations if

you want to study cryptography/DES a bit more

Applied Cryptography, Bruce Schneier Serious Cryptography
Jean-Philippe Aumasson

DRM

MAGICGATE
Sony, here are some book recommendations if

you want to study cryptography/DES a bit more

Applied Cryptography, Bruce Schneier Serious Cryptography
Jean-Philippe Aumasson

The Manga Guide to Cryptography,
Masaaki, Shinichi, Idero, Verte et al.

GS WHAT IS THE GS

GS WHAT IS THE GS
A rasterizer

GS WHAT IS THE GS
A rasterizer

That's it!!!

GS WHAT IS THE GS
A rasterizer

That's it!!!

X Y Z W

-1.0 -1.0 0.0 1.0

1.0 -1.0 0.0 1.0

0.0 1.0 0.0 1.0

GS WHAT IS THE GS
A rasterizer

That's it!!!

X Y Z W

-1.0 -1.0 0.0 1.0

1.0 -1.0 0.0 1.0

0.0 1.0 0.0 1.0

Draws Internally into a Framebuffer. A part of the
GS called PCRTC then outputs it to your TV

GS WHAT IS THE GS

X Y Z W

-1.0 -1.0 0.0 1.0

1.0 -1.0 0.0 1.0

0.0 1.0 0.0 1.0

PREPROCESS RASTERIZE

TEXTURE MAP

BORDER CHECK

PCRTC

GS WHAT IS THE GS

PREPROCESS RASTERIZE

TEXTURE MAP

BORDER CHECK

PCRTC

GS WHAT IS THE GS

PREPROCESS RASTERIZE

TEXTURE MAP

BORDER CHECK

PCRTC

GS WHAT IS THE GS

PREPROCESS RASTERIZE

TEXTURE MAP

BORDER CHECK

PCRTC

GS WHAT IS THE GS

PREPROCESS RASTERIZE

TEXTURE MAP

BORDER CHECK

PCRTC

GS WHAT IS THE GS

PREPROCESS RASTERIZE

TEXTURE MAP

BORDER CHECK

PCRTC

And that's a PS2/TV folks!

GS

WHAT IS THE GS

GS

WHAT IS THE GS
Data is transferred to the GS by using the GIF

which is a part of the EE

GS

WHAT IS THE GS
Data is transferred to the GS by using the GIF

which is a part of the EE

Textures are transferred in a way that pleases
the GS pixel units

GS

WHAT IS THE GS
Data is transferred to the GS by using the GIF

which is a part of the EE

Textures are transferred in a way that pleases
the GS pixel units

Here is an example with PSMCT32

GS

WHAT IS THE GS
Data is transferred to the GS by using the GIF

which is a part of the EE

Textures are transferred in a way that pleases
the GS pixel units

Here is an example with PSMCT32

GS

WHAT IS THE GS

GS

WHAT IS THE GS

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

GS

WHAT IS THE GS

GS

WHAT IS THE GS

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

GS

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

WHAT IS THE GS

GS

WHAT IS THE GS

GS

WHAT IS THE GS

GS

WHAT IS THE GS

4 and 8 bit textures can optionally be indexed
and use a palette, which is called in a PS2

world a CLUT (Color LookUp Table)

GS

WHAT IS THE GS

4 and 8 bit textures can optionally be indexed
and use a palette, which is called in a PS2

world a CLUT (Color LookUp Table)

Other notable thing: the Framebuffer doesn't
have a fixed size and can be resized to 1080p!

GS

WHAT IS THE GS

4 and 8 bit textures can optionally be indexed
and use a palette, which is called in a PS2

world a CLUT (Color LookUp Table)

Other notable thing: the Framebuffer doesn't
have a fixed size and can be resized to 1080p!

But we cannot output it unfortunately...

GS

WHAT IS THE GS

4 and 8 bit textures can optionally be indexed
and use a palette, which is called in a PS2

world a CLUT (Color LookUp Table)

Other notable thing: the Framebuffer doesn't
have a fixed size and can be resized to 1080p!

But we cannot output it unfortunately...

...without hacks :D

OTHERS - HW
OTHER HARDWARE

OTHERS - HW
OTHER HARDWARE

GamePads are handled by the IOP. Usually
GamePad state is read at each VSync by the

game logic

OTHERS - HW
OTHER HARDWARE

GamePads are handled by the IOP. Usually
GamePad state is read at each VSync by the

game logic

GamePad communicate with the SIO2
protocol to the PS2, which is an extension of

the original PS1 protocol

OTHERS - HW
OTHER HARDWARE

GamePads are handled by the IOP. Usually
GamePad state is read at each VSync by the

game logic

The IPU is a secondary processor hidden in
the EE without any ISA

GamePad communicate with the SIO2
protocol to the PS2, which is an extension of

the original PS1 protocol

OTHERS - HW
OTHER HARDWARE

GamePads are handled by the IOP. Usually
GamePad state is read at each VSync by the

game logic

The IPU is a secondary processor hidden in
the EE without any ISA

GamePad communicate with the SIO2
protocol to the PS2, which is an extension of

the original PS1 protocol

You write data, through DMA, send the
command and it decodes the stream in real

time.

OTHERS - HW
OTHER HARDWARE

OTHERS - HW
OTHER HARDWARE

Syscon is a separate processor on the
motherboard that handles power

management related tasks

We essentially can forget about it emulation
wise

OTHERS - HW
OTHER HARDWARE

Syscon is a separate processor on the
motherboard that handles power

management related tasks

We essentially can forget about it emulation
wise

The CDVD subsystem is essentially composed
of 3 parts: the laser, a DSP to decode the laser

signals and mechacon to ensure DRM

OTHERS - HW
OTHER HARDWARE

Syscon is a separate processor on the
motherboard that handles power

management related tasks

We essentially can forget about it emulation
wise

The CDVD subsystem is essentially composed
of 3 parts: the laser, a DSP to decode the laser

signals and mechacon to ensure DRM

The BIOS also has the infamous CSS
algorithm to decode DVDs, this is handled by

the IOP

OTHERS - HW
OTHER HARDWARE

OTHERS - HW
OTHER HARDWARE

USB and IEEE 1394 are connected to IOP's
DMA access

OTHERS - HW
OTHER HARDWARE

USB and IEEE 1394 are connected to IOP's
DMA access

The protocols are game specific.

OTHERS - HW
OTHER HARDWARE

USB and IEEE 1394 are connected to IOP's
DMA access

The SSBUS is essentially the DMA core of the
PS2. The EE, IOP, DEV9, CDVD, etc... are all

connected to it.

The protocols are game specific.

OTHERS - HW
OTHER HARDWARE

USB and IEEE 1394 are connected to IOP's
DMA access

The SSBUS is essentially the DMA core of the
PS2. The EE, IOP, DEV9, CDVD, etc... are all

connected to it.

DEV9 is a PCMCIA-like device addressed
through DMA. Protocols are game specific but
are mostly centered around the ethernet and

HDD adapter.

The protocols are game specific.

EXAMPLE

EXAMPLE

COP2COP1

EE

VU1 VIF1

IOP

SIF

EXAMPLE

COP2COP1

EE

VU1 VIF1

IOP

SIF

EXAMPLE

SIOPAD

COP2COP1

EE

VU1 VIF1

IOP

SIF

EXAMPLE

SIOPAD

GIF

GS

PSCRT

COP2COP1

EE

VU1 VIF1

IOP

SIF

EXAMPLE

SIOPAD

GIF

GS

PSCRT

COP2COP1

EE

VU1 VIF1

IOP

SIF

EXAMPLE

SIOPAD

A VSync interrupt is reached, EE reads PAD

state, transferred through the SIF

GIF

GS

PSCRT

COP2COP1

EE

VU1 VIF1

IOP

SIF

EXAMPLE

SIOPAD

A VSync interrupt is reached, EE reads PAD

state, transferred through the SIF

GIF

GS

PSCRT

COP2COP1

EE

VU1 VIF1

EXAMPLE
The EE runs the enemy's AI logic, does

some trigonometry for hitbox with COP1
and COP2 for the next frame

GIF

GS

PSCRT

COP2COP1

EE

VU1 VIF1

kh2ai pseudocode

delta_hitbox = 0.1
if ((keyblade.hitbox - enemy.hitbox) <= delta_hitbox):
 enemy.attack.one_winged_angel()

1
2
3
4
5

IOP

SIF

EXAMPLE

SIOPAD

Meanwhile the VU1 calculated the
transformations of the 3D model for this

frame and transfers it to the GS

GIF

GS

PSCRT

COP2COP1

EE

VU1 VIF1

IOP

SIF

EXAMPLE

SIOPAD

The GS is now ready to draw! Meanwhile
the game logic continued and need to play a

sound effect

GIF

GS

PSCRT

COP2COP1

EE

VU1 VIF1

SPU2

IOP

SIF

EXAMPLE

SIOPAD

The GS now draws the frame on screen
while the game logic continued and a new

3D model is loaded into VU memory

GIF

GS

PSCRT

COP2COP1

EE

VU1 VIF1

EXAMPLE

And that's how you get a video game!

EXAMPLE

And that's how you get a video game!

...and diagrams that doesn't make sense

EXAMPLE

And that's how you get a video game!

The core idea is that the game logic,
rendering logic and I/O logic are all able to

run in parallel on the different cores

...and diagrams that doesn't make sense

EXAMPLE

And that's how you get a video game!

The core idea is that the game logic,
rendering logic and I/O logic are all able to

run in parallel on the different cores

There is an infinite number of possible
arrangements of your rendering pipeline,

try to imagine others!

...and diagrams that doesn't make sense

HOW DOES EMULATION WORK

EMULATOR

EMULATOR

What is the first step of making an emulator?

EMULATOR

➜ KH2FM file KH2FM.ISO
KH2FM.ISO: UDF filesystem data (version 1.5) ''
➜ KH2FM file SLPM_666.75
SLPM_666.75: ELF 32-bit LSB executable, MIPS, MIPS-III version 1 (SYSV), statically
linked, stripped

1
2
3
4

What is the first step of making an emulator?

EMULATOR

➜ KH2FM file KH2FM.ISO
KH2FM.ISO: UDF filesystem data (version 1.5) ''
➜ KH2FM file SLPM_666.75
SLPM_666.75: ELF 32-bit LSB executable, MIPS, MIPS-III version 1 (SYSV), statically
linked, stripped

1
2
3
4

What is the first step of making an emulator?

File parsers!

PARSERS
MEET SYSTEM.CNF

PARSERS

// return value:
// 0 - Invalid or unknown disc.
// 1 - PS1 CD
// 2 - PS2 CD
int GetPS2ElfName(wxString& name)
{
 int retype = 0;

 try {
 IsoFSCDVD isofs;
 IsoFile file(isofs, L"SYSTEM.CNF;1");

 int size = file.getLength();
 if(size == 0) return 0;
 [...]
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

MEET SYSTEM.CNF

PARSERS
MEET SYSTEM.CNF

PARSERS

[...]
while(!file.eof())
{
 const wxString original(fromUTF8(file.readLine().c_str()));
 const ParsedAssignmentString parts(original);

 if(parts.lvalue.IsEmpty() && parts.rvalue.IsEmpty()) continue;
 if(parts.rvalue.IsEmpty() && file.getLength() != file.getSeekPos())
 { // Some games have a character on the last
 // line of the file, don't print the error in those cases.
 Console.Warning("(SYSTEM.CNF) Unusual or malformed entry in SYSTEM.CNF
ignored:");
 Console.Indent().WriteLn(original);
 continue;
 }

1
2
3
4
5
6
7
8
9

10
11

12
13
14

MEET SYSTEM.CNF

PARSERS
MEET SYSTEM.CNF

PARSERS

[...]
if(parts.lvalue == L"BOOT2")
{
 name = parts.rvalue;
 Console.WriteLn(Color_StrongBlue, L"(SYSTEM.CNF) Detected PS2 Disc = " + name);
 retype = 2;
}
else if(parts.lvalue == L"BOOT")
{
 name = parts.rvalue;
 Console.WriteLn(Color_StrongBlue, L"(SYSTEM.CNF) Detected PSX/PSone Disc = " +
name);
 retype = 1;
}
else if(parts.lvalue == L"VMODE")
{
 Console.WriteLn(Color_Blue, L"(SYSTEM.CNF) Disc region type = " + parts.rvalue);
}
else if(parts.lvalue == L"VER")
{
 Console.WriteLn(Color_Blue, L"(SYSTEM.CNF) Software version = " + parts.rvalue);
}

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21

MEET SYSTEM.CNF

INTERPRETER

void R5900::Interpreter::OpcodeImpl::SWC1() {
 u32 addr;
 // force sign extension to 32bit
 addr = cpuRegs.GPR.r[_Rs_].UL[0] + (s16)(cpuRegs.code & 0xffff);
 if (addr & 0x00000003)
 {
 Console.Error("FPU (SWC1 Opcode): Invalid Unaligned Memory Address");
 return;
 } // Should signal an exception?
 memWrite32(addr, fpuRegs.fpr[_Rt_].UL);
}

void recSWC1()
{
 recCall(::R5900::Interpreter::OpcodeImpl::SWC1);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

RECOMPILER
void recSWC1()
{
#ifndef FPU_RECOMPILE
 recCall(::R5900::Interpreter::OpcodeImpl::SWC1);
#else
 _deleteFPtoXMMreg(_Rt_, 1);

 xMOV(arg2regd, ptr32[&fpuRegs.fpr[_Rt_].UL]);

 if(GPR_IS_CONST1(_Rs_))
 {
 int addr = g_cpuConstRegs[_Rs_].UL[0] + _Imm_;
 vtlb_DynGenWrite_Const(32, addr);
 }
 else
 {
 _eeMoveGPRtoR(arg1regd, _Rs_);
 if (_Imm_ != 0)
 xADD(arg1regd, _Imm_);

 iFlushCall(FLUSH_FULLVTLB);

 vtlb_DynGenWrite(32);
 }

 EE::Profiler.EmitOp(eeOpcode::SWC1);
#endif
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

SELF-MODIFYING CODE
void mmap_PageFaultHandler::OnPageFaultEvent(const PageFaultInfo& info, bool& handled)
{
 pxAssert(eeMem);

 // get bad virtual address
 uptr offset = info.addr - (uptr)eeMem->Main;
 if(offset >= Ps2MemSize::MainRam) return;

 mmap_ClearCpuBlock(offset);
 handled = true;
}

// offset - offset of address relative to psM.
// All recompiled blocks belonging to the page are cleared, and any new blocks recompiled
// from code residing in this page will use manual protection.
static __fi void mmap_ClearCpuBlock(uint offset)
{
 [...]
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

BIOS

SYSCALL

BIOS

We can sorta emulate some instructions!

SYSCALL

BIOS

We can sorta emulate some instructions!

We now need to emulate PS2-specific ones

SYSCALL

2 ways to do it:

BIOS

HLE: Reimplement them like an interpreter

We can sorta emulate some instructions!

We now need to emulate PS2-specific ones

SYSCALL

2 ways to do it:

BIOS

HLE: Reimplement them like an interpreter

LLE: Run the BIOS

We can sorta emulate some instructions!

We now need to emulate PS2-specific ones

SYSCALL

2 ways to do it:

BIOS

HLE: Reimplement them like an interpreter

LLE: Run the BIOS

We can sorta emulate some instructions!

We now need to emulate PS2-specific ones

SYSCALL

2 ways to do it:

BIOS

HLE: Reimplement them like an interpreter

LLE: Run the BIOS

We can sorta emulate some instructions!

We now need to emulate PS2-specific ones

SYSCALL

2 ways to do it:

PS2 GAMES PATCH THE BIOS

BIOS

DUMPING THE BIOS

BIOS

The BIOS is available on the flash chip!

DUMPING THE BIOS

BIOS

The BIOS is available on the flash chip!

Unencrypted!!

DUMPING THE BIOS

BIOS

The BIOS is available on the flash chip!

Unencrypted!!

DUMPING THE BIOS

Save for the DVD EROM, probably to hide the CSS

BIOS

The BIOS is available on the flash chip!

Unencrypted!!

DUMPING THE BIOS

Save for the DVD EROM, probably to hide the CSS

We don't really care about it though :D

BIOS

The BIOS is available on the flash chip!

Unencrypted!!

DUMPING THE BIOS

Save for the DVD EROM, probably to hide the CSS

A few soldering hackjobs later...

We don't really care about it though :D

BIOS ENTRYPOINT

mfc0 k0,PRId ; get register PRId from COP01
nop2
slti at,k0,0x59 ; if (0x59<=k0) at = 03
bne at,zero,LAB_00000024 ; if (at == 0) jmp LAB_000000244
nop5

BIOS ENTRYPOINT

slti at,k0,0x59 ; if (0x59<=k0) at = 0

mfc0 k0,PRId ; get register PRId from COP01
nop2

3
bne at,zero,LAB_00000024 ; if (at == 0) jmp LAB_000000244
nop5

BIOS ENTRYPOINT

bne at,zero,LAB_00000024 ; if (at == 0) jmp LAB_00000024

mfc0 k0,PRId ; get register PRId from COP01
nop2
slti at,k0,0x59 ; if (0x59<=k0) at = 03

4
nop5

BIOS ENTRYPOINT

bne at,zero,LAB_00000024 ; if (at == 0) jmp LAB_00000024

mfc0 k0,PRId ; get register PRId from COP01
nop2
slti at,k0,0x59 ; if (0x59<=k0) at = 03

4
nop5

COP0 is not the same between the IOP and the EE

BIOS ENTRYPOINT

bne at,zero,LAB_00000024 ; if (at == 0) jmp LAB_00000024

mfc0 k0,PRId ; get register PRId from COP01
nop2
slti at,k0,0x59 ; if (0x59<=k0) at = 03

4
nop5

COP0 is not the same between the IOP and the EE

This bit of code effectively is the entrypoint for
both the IOP and the EE

BIOS ENTRYPOINT

bne at,zero,LAB_00000024 ; if (at == 0) jmp LAB_00000024

mfc0 k0,PRId ; get register PRId from COP01
nop2
slti at,k0,0x59 ; if (0x59<=k0) at = 03

4
nop5

COP0 is not the same between the IOP and the EE

This bit of code effectively is the entrypoint for
both the IOP and the EE

We already have to emulate the IOP

Architecture

CUSTOM ARCHITECTURE

Architecture

How do you figure out a custom ISA?

CUSTOM ARCHITECTURE

Architecture

How do you figure out a custom ISA?

CUSTOM ARCHITECTURE

Essentially 2 ways:

Architecture

Make assumptions, test assumptions on hardware

How do you figure out a custom ISA?

CUSTOM ARCHITECTURE

Essentially 2 ways:

Architecture

Make assumptions, test assumptions on hardware

Get documentation from Sony

How do you figure out a custom ISA?

CUSTOM ARCHITECTURE

Essentially 2 ways:

Architecture

Make assumptions, test assumptions on hardware

Get documentation from Sony

How do you figure out a custom ISA?

CUSTOM ARCHITECTURE

Essentially 2 ways:

Architecture

Make assumptions, test assumptions on hardware

Get documentation from Sony

How do you figure out a custom ISA?

CUSTOM ARCHITECTURE

Essentially 2 ways:

Here's a talk for some insight on the process:

Architecture

Make assumptions, test assumptions on hardware

Get documentation from Sony

How do you figure out a custom ISA?

Reverse engineering of binary programs for
custom virtual machines

CUSTOM ARCHITECTURE

Essentially 2 ways:

Here's a talk for some insight on the process:

https://www.recon.cx/2012/schedule/events/236.en.html

MMU
Memory Virtual Memory

MMU
Memory Virtual Memory

MMU
Memory Virtual Memory

MMU
Memory Virtual Memory

MMU
Memory Virtual Memory

Cached! (TLB)

MMU
void __fastcall vtlb_memRead64(u32 mem, mem64_t *out)
{
 auto vmv = vtlbdata.vmap[mem>>VTLB_PAGE_BITS];

 if (!vmv.isHandler(mem))
 {
 if (!CHECK_EEREC) {
 if(CHECK_CACHE && CheckCache(mem))
 {
 *out = readCache64(mem);
 return;
 }
 }

 *out = *(mem64_t*)vmv.assumePtr(mem);
[...]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

The EE has an MMU we need to emulate, meet VTLB!

MMU
// --
// TLB lookup is performed in const, with the assumption that the COP0/TLB will
clear the
// recompiler if the TLB is changed.
void vtlb_DynGenRead64_Const(u32 bits, u32 addr_const)
{
 EE::Profiler.EmitConstMem(addr_const);

 auto vmv = vtlbdata.vmap[addr_const>>VTLB_PAGE_BITS];
 if(!vmv.isHandler(addr_const))
 {
 auto ppf = vmv.assumePtr(addr_const);
 switch(bits)
 {
 case 64:
 iMOV64_Smart(ptr[arg2reg], ptr[(void*)ppf]);
 break;

 case 128:
 iMOV128_SSE(ptr[arg2reg], ptr[(void*)ppf]);
 break;

 jNO_DEFAULT
 }
 }
[...]

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

The EE has an MMU we need to emulate, meet recVTLB!

SysExecutor

MULTI CORE SHENANIGANS

SysExecutor

Now that we have multiple CPU cores running
in parallel we need to handle them

concurrently

MULTI CORE SHENANIGANS

SysExecutor

Now that we have multiple CPU cores running
in parallel we need to handle them

concurrently

MULTI CORE SHENANIGANS

We have our own thread scheduler to do that,
meet SysExecutor!

SysExecutor

MULTI CORE SHENANIGANS
void pxEvtQueue::ProcessEvent(SysExecEvent* evt)
{
 if(!evt) return;

 if(wxThread::GetCurrentId() != m_OwnerThreadId)
 {
 SynchronousActionState sync;
 evt->SetSyncState(sync);
 PostEvent(evt);
 sync.WaitForResult();
 }
 else
 {
 std::unique_ptr<SysExecEvent> deleteMe(evt);
 deleteMe->_DoInvokeEvent();
 }
 [...]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Dispatch DISPATCHING TO PROCESSORS

Dispatch DISPATCHING TO PROCESSORS

How do we transfer data from, say, the IOP to
DEV9?

Dispatch DISPATCHING TO PROCESSORS

How do we transfer data from, say, the IOP to
DEV9?

Our JIT fallbacks to Interpreters and verifies
where the write should go!

Dispatch DISPATCHING TO PROCESSORS
static void rpsxSB()
{
 _psxDeleteReg(_Rs_, 1);
 _psxDeleteReg(_Rt_, 1);

 xMOV(arg1regd, ptr32[&psxRegs.GPR.r[_Rs_]]);
 if (_Imm_) xADD(arg1regd, _Imm_);
 xMOV(arg2regd, ptr32[&psxRegs.GPR.r[_Rt_]]);
 xFastCall((void*)iopMemWrite8, arg1regd, arg2regd);
}

void __fastcall iopMemWrite8(u32 mem, u8 value)
{
 mem &= 0x1fffffff;
 u32 t = mem >> 16;
 [...]
 else
 {
 if (!(p != NULL && !(psxRegs.CP0.n.Status & 0x10000)))
 {
 if (t == 0x1000)
 {
 DEV9write8(mem, value); return;
 }
 PSXMEM_LOG("err sb %8.8lx = %x", mem, value);
 }
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

SPU2 EMULATING SOUND

SPU2 EMULATING SOUND
We run an async loop that processes audio

while everything else is running

SPU2 EMULATING SOUND
__forceinline void TimeUpdate(u32 cClocks)
{
 u32 dClocks = cClocks - lClocks;

 // Sanity Checks:
 // It's not totally uncommon for the IOP's
 // clock to jump backwards a cycle or two, and in
 // such cases we just want to ignore the TimeUpdate call.
 if (dClocks > (u32)-15)
 return;

 if (SynchMode == 1) // AsyncMix on
 SndBuffer::UpdateTempoChangeAsyncMixing();
 else
 TickInterval = 768; // Reset to default

 //Update Mixing Progress
 while (dClocks >= TickInterval)
 {
 for (int i = 0; i < 2; i++)
 {
 if (has_to_call_irq[i])
 {
 has_to_call_irq[i] = false;
 if (!(Spdif.Info & (4 << i)) && Cores[i].IRQEnable)
 {
 Spdif.Info |= (4 << i);
 if (!SPU2_dummy_callback)
 spu2Irq();
 }
 }
 }
 Mix();
 [...]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

SPU2 EMULATING SOUND
__forceinline void Mix()
{
 [...]
 Out.Left *= FinalVolume;
 Out.Right *= FinalVolume;

 SndBuffer::Write(Out);
 [...]
}

void SndBuffer::Write(const StereoOut32& Sample)
{
 [...]
 else
 {
 if (SynchMode == 0) // TimeStrech on
 timeStretchWrite();
 else
 _WriteSamples(sndTempBuffer, SndOutPacketSize);
 }
}

void SndOut_SDL::callback_fillBuffer(void* userdata, Uint8* stream, int len)
{
 [...]
 for (Uint16 i = 0; i < sdl_samples; i += SndOutPacketSize)
 SndBuffer::ReadSamples(&buffer[i]);
 SDL_MixAudio(stream, (Uint8*)buffer.get(), len, SDL_MIX_MAXVOLUME);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

GS EMULATING GRAPHICS

void GSState::FlushPrim()
{
 if (m_index.tail > 0)
 {
 GL_REG("FlushPrim ctxt %d", PRIM->CTXT);
 [...]
 if (GSLocalMemory::m_psm[m_context->FRAME.PSM].fmt < 3 && GSLocalMemory::m_psm[m_context->ZBUF.PSM].fmt < 3)
 {
 m_vt.Update(m_vertex.buff, m_index.buff, m_vertex.tail, m_index.tail, GSUtil::GetPrimClass(PRIM->PRIM));

 m_context->SaveReg();

 try
 {
 Draw();
 }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

GS EMULATING GRAPHICS
void GSRendererHW::Draw()
{
 if(m_dev->IsLost() || IsBadFrame()) {
 GL_INS("Warning skipping a draw call (%d)", s_n);
 return;
 }
 GL_PUSH("HW Draw %d", s_n);
 [...]
 GSTextureCache::Target* rt = NULL;
 GSTexture* rt_tex = NULL;
 if (!no_rt) {
 rt = m_tc->LookupTarget(TEX0, m_width, m_height, GSTextureCache::RenderTarget, true, fm);
 rt_tex = rt->m_texture;
 }

 TEX0.TBP0 = context->ZBUF.Block();
 TEX0.TBW = context->FRAME.FBW;
 TEX0.PSM = context->ZBUF.PSM;

 GSTextureCache::Target* ds = NULL;
 GSTexture* ds_tex = NULL;
 if (!no_ds) {
 ds = m_tc->LookupTarget(TEX0, m_width, m_height, GSTextureCache::DepthStencil, context->DepthWrite());
 ds_tex = ds->m_texture;
 }
 [...]
 DrawPrims(rt_tex, ds_tex, m_src);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

GS EMULATING GRAPHICS
void GSRendererOGL::DrawPrims(GSTexture* rt, GSTexture* ds, GSTextureCache::Source* tex)
{
 // HLE implementation of the channel selection effect
 //
 // Warning it must be done at the begining because it will change the
 // vertex list (it will interact with PrimitiveOverlap and accurate
 // blending)
 EmulateChannelShuffle(&rt, tex);

 // Upscaling hack to avoid various line/grid issues
 MergeSprite(tex);

 // Always check if primitive overlap as it is used in plenty of effects.
 m_prim_overlap = PrimitiveOverlap();
 [...]
 // Blend
 if (!IsOpaque() && rt) {
 EmulateBlending(DATE_GL42, DATE_GL45);
 } else {
 dev->OMSetBlendState(); // No blending please
 }

 if (m_ps_sel.dfmt == 1) {
 // Disable writing of the alpha channel
 m_om_csel.wa = 0;
 }

 if (DATE && !DATE_GL45) {
 GSVector4i dRect = ComputeBoundingBox(rtscale, rtsize);
 }

 dev->BeginScene();

 EmulateZbuffer(); // will update VS depth mask

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

OTHERS OTHER COMPONENTS

OTHERS OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works
relatively similarly and as such I won't

mention them for brevity sake

OTHERS OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works
relatively similarly and as such I won't

mention them for brevity sake

Memory writes are handled by the module,
which simulates the I/O.

OTHERS OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works
relatively similarly and as such I won't

mention them for brevity sake

Memory writes are handled by the module,
which simulates the I/O.

It is then piped to one of multiple system
backend. e.g.:

OTHERS OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works
relatively similarly and as such I won't

mention them for brevity sake

Memory writes are handled by the module,
which simulates the I/O.

It is then piped to one of multiple system
backend. e.g.:

PAD: SDL

OTHERS OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works
relatively similarly and as such I won't

mention them for brevity sake

Memory writes are handled by the module,
which simulates the I/O.

It is then piped to one of multiple system
backend. e.g.:

PAD: SDL
DEV9: TAP

OTHERS OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works
relatively similarly and as such I won't

mention them for brevity sake

Memory writes are handled by the module,
which simulates the I/O.

It is then piped to one of multiple system
backend. e.g.:

PAD: SDL
DEV9: TAP
USB-video: V4L

OTHERS OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works
relatively similarly and as such I won't

mention them for brevity sake

Memory writes are handled by the module,
which simulates the I/O.

It is then piped to one of multiple system
backend. e.g.:

PAD: SDL
DEV9: TAP
USB-video: V4L
MCD: your filesystem!

OTHERS OTHER COMPONENTS

PAD, DEV9, USB, MCD and CDVD works
relatively similarly and as such I won't

mention them for brevity sake

Memory writes are handled by the module,
which simulates the I/O.

It is then piped to one of multiple system
backend. e.g.:

PAD: SDL
DEV9: TAP
USB-video: V4L
MCD: your filesystem!
CDVD: <linux/cdrom.h>

WHAT'S LEFT?

WHAT'S LEFT?
Threading the GS and the VU!

WHAT'S LEFT?
Threading the GS and the VU!

Threading the GS is done by waiting for data to be
received then have multiple rendering threads in

parallel when all transfers are achieved

WHAT'S LEFT?
Threading the GS and the VU!

Threading the GS is done by waiting for data to be
received then have multiple rendering threads in

parallel when all transfers are achieved

Fairly safe

WHAT'S LEFT?
Threading the GS and the VU!

Threading the GS is done by waiting for data to be
received then have multiple rendering threads in

parallel when all transfers are achieved

Fairly safe

Threading the VU is much harder and not nearly as
safe

WHAT'S LEFT?
Threading the GS and the VU!

Threading the GS is done by waiting for data to be
received then have multiple rendering threads in

parallel when all transfers are achieved

Fairly safe

Threading the VU is much harder and not nearly as
safe

Still considered a SpeedHack, still break things

WHAT'S LEFT?
Threading the GS and the VU!

Threading the GS is done by waiting for data to be
received then have multiple rendering threads in

parallel when all transfers are achieved

Fairly safe

Threading the VU is much harder and not nearly as
safe

Still considered a SpeedHack, still break things

Read up our dev blog about threading VU1 for more infos!

WHAT'S LEFT?

WHAT'S LEFT?
Not going too fast!!

WHAT'S LEFT?

WHAT'S LEFT?
Faster isn't always better !

WHAT'S LEFT?

WHAT'S LEFT?
Emulating the laws of physics

WHAT'S LEFT?
Emulating the laws of physics

No, really

WHAT'S LEFT?
Emulating the laws of physics

No, really

WHAT'S LEFT?
Emulating the laws of physics

No, really

// Read speed is roughly 37% at lowest and full speed on outer edge.
// I imagine it's more logarithmic than this
// Required for Shadowman to work
// Use SeekToSector as Sector hasn't been updated yet
const float sectorSpeed = (((float)(cdvd.SeekToSector-offset) / numSectors) * 0.63f) +
0.37f;
//DevCon.Warning("Read speed %f sector %d\n", sectorSpeed, cdvd.Sector);
return ((PSXCLK * cdvd.BlockSize) / ((float)(((mode == MODE_CDROM) ?
 PSX_CD_READSPEED : PSX_DVD_READSPEED) * cdvd.Speed) * sectorSpeed));

1
2
3
4
5

6
7
8

WHAT'S LEFT?

WHAT'S LEFT?
Making an infrastructure!

WHAT'S LEFT?
Making an infrastructure!

A website, forum, compatibility list, get testers...

WHAT'S LEFT?
Making an infrastructure!

A website, forum, compatibility list, get testers...

This is where YOU come in :D

WHAT'S LEFT?
Making an infrastructure!

A website, forum, compatibility list, get testers...

This is where YOU come in :D

We always need help, feel free to hang out and say hi!

WHAT'S LEFT?
Making an infrastructure!

A website, forum, compatibility list, get testers...

This is where YOU come in :D

We always need help, feel free to hang out and say hi!

https://discord.com/invite/TCz3t9k

https://discord.com/invite/TCz3t9k

WHAT'S LEFT?
Making an infrastructure!

A website, forum, compatibility list, get testers...

This is where YOU come in :D

We always need help, feel free to hang out and say hi!

https://discord.com/invite/TCz3t9k

You can bridge it to matrix with
https://github.com/matrix-discord/mx-

puppet-discord

https://discord.com/invite/TCz3t9k
https://github.com/matrix-discord/mx-puppet-discord

STATE STATE OF THE PROJECT

STATE STATE OF THE PROJECT

PCSX2 is really old

STATE STATE OF THE PROJECT

PCSX2 is really old

It has now a lot of legacy code that simply
needs to be redone, redesigned or freshened

up

STATE STATE OF THE PROJECT

PCSX2 is really old

It has now a lot of legacy code that simply
needs to be redone, redesigned or freshened

up

I am leading a whole codebase redesign effort

STATE STATE OF THE PROJECT

PCSX2 is really old

It has now a lot of legacy code that simply
needs to be redone, redesigned or freshened

up

I am leading a whole codebase redesign effort

I'll show you in the next slides the state of
things and what to expect!

SysExecutor CODE ARCHITECTURE

MCD

GUI

EE

SysExecutor CODE ARCHITECTURE

MCD

Core

LibEmitter

et cetera

Utilities

GUI

EE

et cetera

SysExecutor CODE ARCHITECTURE

GS

Plugins

MCD

Core

LibEmitter

et cetera

Utilities

GUI

EE

et cetera

SysExecutor CODE ARCHITECTURE

SPU2GS

Plugins

MCD

Core

LibEmitter

et cetera

Utilities

GUI

EE

et cetera

SysExecutor CODE ARCHITECTURE

SPU2 USBGS

Plugins

MCD

Core

LibEmitter

et cetera

Utilities

GUI

EE

et cetera

SysExecutor CODE ARCHITECTURE

SPU2 USBGS CDVD

Plugins

MCD

Core

LibEmitter

et cetera

Utilities

GUI

EE

et cetera

SysExecutor CODE ARCHITECTURE

SPU2 USBGS CDVD PAD

Plugins

MCD

Core

LibEmitter

et cetera

Utilities

GUI

EE

et cetera

SysExecutor CODE ARCHITECTURE

SPU2 USBGS CDVD PAD DEV9

Plugins

MCD

Core

LibEmitter

et cetera

Utilities

GUI

EE

et cetera

SysExecutor CODE ARCHITECTURE

SPU2 USBGS CDVD PAD DEV9FW

Stubbed

Plugins

MCD

Core

LibEmitter

et cetera

Utilities

GUI

EE

et cetera

SysExecutor CODE ARCHITECTURE

SPU2 USBGS CDVD PAD DEV9FW

Stubbed

Plugins

MCD

Built-in Plugin

Core

LibEmitter

et cetera

Utilities

GUI

EE

et cetera

SysExecutor CODE ARCHITECTURE

SPU2 USBGS CDVD PAD DEV9FW

Stubbed

Plugins

MCD

Built-in Plugin

Core

LibEmitter

et cetera

Utilities

GUI

EE

et cetera

Hard dependency on wxWidgets!!

PCSX2 CODE ARCHITECTURE

SPU2 USBGS CDVD

PAD DEV9

Core

FW MCD
LibEmitter

et cetera

Utilities

EE et cetera

Frontend

GUI PAD

USB CDVD
Backend only

IOP

Frontend 2

GUI PAD

USB CDVD

1

2

2

JIT

JIT

JIT

JIT

Oops

JIT

JIT

Fortunately, our 64 bit JIT is mostly done!

JIT

Fortunately, our 64 bit JIT is mostly done!

JIT

Fortunately, our 64 bit JIT is mostly done!

Unfortunately I'm giving a talk instead of fixing it :)

IPC

IPC
I've worked on a new protocol for

3 way game<->emulator<-> OS communication

IPC
I've worked on a new protocol for

3 way game<->emulator<-> OS communication

IPC
I've worked on a new protocol for

3 way game<->emulator<-> OS communication

Romhacks and game modding tools are about to get
a lot more interesting!

STATE

STATE OF THE PROJECT

STATE

STATE OF THE PROJECT
What to expect for 1.8:

STATE

STATE OF THE PROJECT
What to expect for 1.8:

No Plugins!

STATE

STATE OF THE PROJECT
What to expect for 1.8:

No Plugins!
64-bit Support!

STATE

STATE OF THE PROJECT
What to expect for 1.8:

No Plugins!
64-bit Support!
Reduced Input Lag!

STATE

STATE OF THE PROJECT
What to expect for 1.8:

No Plugins!
64-bit Support!
Reduced Input Lag!
A new shiny IPC protocol!

STATE

STATE OF THE PROJECT
What to expect for 1.8:

No Plugins!
64-bit Support!
Reduced Input Lag!
A new shiny IPC protocol!
...and much more (read our
progress reports!)

STATE

STATE OF THE PROJECT

STATE

STATE OF THE PROJECT
What might be ready for 2.0:

A New Qt based GUI along with
support for pluggable & community GUIs

STATE

STATE OF THE PROJECT
What might be ready for 2.0:

A New Qt based GUI along with
support for pluggable & community GUIs
Rework of our Infrastructure/Website

STATE

STATE OF THE PROJECT
What might be ready for 2.0:

A New Qt based GUI along with
support for pluggable & community GUIs
Rework of our Infrastructure/Website
Work on a pluggable JIT backend

STATE

STATE OF THE PROJECT
What might be ready for 2.0:

A New Qt based GUI along with
support for pluggable & community GUIs
Rework of our Infrastructure/Website
Work on a pluggable JIT backend
A full cleanup of the codebase!

STATE

STATE OF THE PROJECT
What might be ready for 2.0:

A New Qt based GUI along with
support for pluggable & community GUIs
Rework of our Infrastructure/Website
Work on a pluggable JIT backend
A full cleanup of the codebase!
And hopefully other nice surprises ;)

END

CLOSING NOTES

END

We do not care about emulation wars

CLOSING NOTES

END

We do not care about emulation wars

CLOSING NOTES

It's always a tradeoff, we chose playability
over accuracy (we still aim for accuracy)

END

We do not care about emulation wars

CLOSING NOTES

It's always a tradeoff, we chose playability
over accuracy (we still aim for accuracy)

We all have different problems and different
solutions

END

We do not care about emulation wars

CLOSING NOTES

It's always a tradeoff, we chose playability
over accuracy (we still aim for accuracy)

We all have different problems and different
solutions

Come hang out with us, chill and have fun,
that's what emulation is all about!

END

We do not care about emulation wars

CLOSING NOTES

It's always a tradeoff, we chose playability
over accuracy (we still aim for accuracy)

We all have different problems and different
solutions

Come hang out with us, chill and have fun,
that's what emulation is all about!

If you don't have fun, why even work on a project
that you know you won't ever be paid for?

konami-code THANKS

konami-code THANKS
PCSX2 Team:

refraction
kotjin
TellowKrinkle
LightningTerror
arcum42
bositman
jackun
And others including
past members like air
and cottonvibes!

konami-code THANKS
PCSX2 Team:

refraction
kotjin
TellowKrinkle
LightningTerror
arcum42
bositman
jackun
And others including
past members like air
and cottonvibes!

Friends:

sirocyl
ellie

konami-code THANKS
PCSX2 Team:

refraction
kotjin
TellowKrinkle
LightningTerror
arcum42
bositman
jackun
And others including
past members like air
and cottonvibes!

Friends:

sirocyl
ellie

The PCSX2 Community:

CK1
Vaser
RedDevilus
pandubz

konami-code THANKS
PCSX2 Team:

refraction
kotjin
TellowKrinkle
LightningTerror
arcum42
bositman
jackun
And others including
past members like air
and cottonvibes!

Friends:

sirocyl
ellie

The PCSX2 Community:

CK1
Vaser
RedDevilus
pandubz

Our Users

konami-code THANKS
PCSX2 Team:

refraction
kotjin
TellowKrinkle
LightningTerror
arcum42
bositman
jackun
And others including
past members like air
and cottonvibes!

Friends:

sirocyl
ellie

The PCSX2 Community:

CK1
Vaser
RedDevilus
pandubz

Our Users

...And everyone else I forgot!

konami-code

gauvain@govanify.com

govanify.com

@GovanifY

info@pcsx2.net

pcsx2.net

@PCSX2

THANK YOU!

mailto:gauvain@govanify.com
https://govanify.com/
https://twitter.com/GovanifY
mailto:info@pcsx2.net
https://pcsx2.net/
https://twitter.com/PCSX2

