
© 2021 Toshiba Corporation

Hiroki Kumagai
February 6th, 2021

FOSDEM 2021

PostgreSQL devroom

Foreign data wrapper study for
schemaless databases

2© 2021 Toshiba Corporation

Self-introduction

• Name: Hiroki Kumagai

• Live in Yokohama of Japan

• Engineer at Toshiba Corporation (Advanced Collaborative Software

Development and Technology Department Corporate Software

Engineering & Technology Center)

• Software development of embedded devices based on open

source software for a while such as digital TV.

• Since 2019 I have joined in current team and we are focused on

developing database technologies required for accessing various

data.

3© 2021 Toshiba Corporation

Today's talk

• Study of FDW applying for schema-less database

• Motif for schema-less database : InfluxDB

• In this talk, schema-less database means database like not

requiring column definition before inserting data.

FDW (Foreign Data Wrapper) *

FDW is a standardized way of handling access to data stored in

external data sources from SQL databases.

PostgreSQL can implement FDW as extension modules.

* https://wiki.postgresql.org/wiki/Foreign_data_wrappers

4© 2021 Toshiba Corporation

Agenda

• What is schema database

• What is InfluxDB

• Current InfluxDB FDW

• Goal

• Design

• Implementation

• Demonstration

• Consideration

• Conclusion

5© 2021 Toshiba Corporation

What is schema database

• In database terms, a schema is the organization and structure of

database.

• A schema contains schema objects, which could be tables, columns,

data types, views, stored procedures, relationships, primary keys,

foreign keys, etc.

https://database.guide/what-is-a-database-schema/

There are many meanings for the term 'schema'.

But in this talk, I focuses only on columns as schema objects.

6© 2021 Toshiba Corporation

What is InfluxDB

• Timeseries database

• It is easy to manage sensor data of IoT devices, log data etc.

• Elements of data
https://docs.influxdata.com/influxdb/cloud/reference/key-concepts/data-elements/

RDBMS InfluxDB Explanation

Table Measurement

Record Point

Column have timestamp type Timestamp

(time)

Primary key.

Point has always one timestamp.

Column have index Tag set A pair data of tag key = tag value.

All tags has index.

Tags are optional, and string value.

Column Field set A pair data of field key = field value.

Point should have at least one field set.

Fields have integer/float/string/boolean value.

Column influxdb keys

7© 2021 Toshiba Corporation

What is InfluxDB (cont.)

• Release versions

• There are two major versions 1.x and 2.x.

• But we are focusing on version 1.x at this moment.

• Query language (NoSQL)

• InfluxQL is an SQL-like query language for InfluxDB.

• There is yet another language Flux in InfluxDB.

• We use InfluxQL because we think it is primary language on 1.x.

• Schema-less feature

• Application can write new tag(s) and field(s) at anytime without

changing schema operation like 'ALTER TABLE'.

8© 2021 Toshiba Corporation

What is InfluxDB - Schema-less operation in InfluxDB

time tag field

DEVICE_ID SIG_A

1970-01-01T00:00:00Z DEVICE1 1

time tag tag field field

DEVICE_ID SUB_ID SIG_A SIG_B

1970-01-01T00:00:00Z DEVICE1 1

1970-01-01T00:00:01Z DEVICE1 A 2 0.4

Step 1

INSERT s,DEVICE_ID=DEVICE1 SIG_A=1 0

Step 2

INSERT s,DEVICE_ID=DEVICE1,SUB_ID=A SIG_A=2,SIG_B=0.4 1000000000

InfluxDB client application can add new columns

without changing data definition explicitly.

There are only two keys

of DEVICE_ID and SIG_A.

The schema is updated by

INSERT operation.

9© 2021 Toshiba Corporation

Current InfluxDB FDW

• We have one FDW implementation of InfluxDB.

• https://github.com/pgspider/influxdb_fdw

• Current spec

• Support only scan operation (SELECT)

• Support push-down WHERE clause and some aggregation

• The tags and fields are mapped into columns of foreign table 1:1.

• Current problems

• Support InfluxDB version 2.x

• Support modify (insert/delete) operation

• Improve usability for the InfluxDB schema change

10© 2021 Toshiba Corporation

Current InfluxDB FDW - Schema change

• When user writes a data point into InfluxDB, it might be added new

tag and/or field keys.

• In this case, user has to update explicitly the foreign table

corresponding to the latest measurement of InfluxDB.

time tag field

DEVICE_ID SIG_A

1970-01-01T00:00:00Z DEVICE1 1

time tag field field

DEVICE_ID SIG_A SIG_B

1970-01-01T00:00:00Z DEVICE1 1

1970-01-01T00:00:01Z DEVICE1 2 0.4

Step1

Step2

CREATE FOREIGN TABLE

st (

time timestamp with time zone,

DEVICE_ID text,

SIG_A bigint

) SERVER influxdb_svr OPTIONS (table 's');

Measurement s in InfluxDB Create a table in PostgreSQL

A data point is added having

a new field key SIG_B

The table is missing a

column for SIG_B field.

11© 2021 Toshiba Corporation

PostgreSQL

Goal

• Design and implementation of schema-less support in InfluxDB FDW

• FDW should be able to access data from InfluxDB without knowing

actual schema on InfluxDB and changing schema after table creation.

• FDW should be able to push-down as possible as to prevent

performance degradation even on schema-less design.

FDW

InfluxDB

Application

PostgreSQL
FDW

InfluxDB

Application

No push-down Push-down (Currently support)

SELECT sum(sig1) FROM x

SELECT sum(sig1) FROM x sum value

sum valueSELECT sum(sig1) FROM x sum value

SELECT sig1 FROM x all values

calc sum

12© 2021 Toshiba Corporation

Design

• Fix the foreign table schema regardless of the InfluxDB measurement.

• Against for tag and field set, we map each data set into

unstructured data types based on hstore type (Two new types of

influxdb_tags and influxdb_fields).

• InfluxDB FDW needs to define two new types to distinguish

between tags and fields during deparsing process because there

are spec gaps between them on InfluxQL.

CREATE FOREIGN TABLE

st (

time timestamp with time zone,

tags influxdb_tags, -- This can refer any tags of data point.

fields influxdb_fields -- This can refer any fields of data point.

) SERVER influxdb_svr OPTIONS (table 's');

13© 2021 Toshiba Corporation

Design - Definition of unstructured data types

• About hstore type

• The hstore data type can be used to store sets of key/value

pairs within a single PostgreSQL value as string.

ex.) '"col1"=>"1", "col2"=>"a"'

"col1" and "col2" are keys.

"1" is value of "col1" key and "a" is value of "col2" key.

CREATE FUNCTION influxdb_tags_in(cstring)

RETURNS influxdb_tags AS '$libdir/hstore', 'hstore_in' -- use hstore function

LANGUAGE C STRICT IMMUTABLE PARALLEL SAFE;

CREATE TYPE influxdb_tags;

Overview of definition of influxdb_tags (same for influxdb_fields)

https://www.postgresql.org/docs/13/hstore.html

14© 2021 Toshiba Corporation

Design - Definition of unstructured data types (cont.)

CREATE TYPE influxdb_tags (
...

INPUT = influxdb_tags_in,
...

);

CREATE OPERATOR -> (

LEFTARG = influxdb_tags,

RIGHTARG = text,

PROCEDURE = fetchval -- use hstore function

);

CREATE FUNCTION fetchval(influxdb_tags, text)

RETURNS text AS '$libdir/hstore', 'hstore_fetchval' -- use hstore function

LANGUAGE C STRUCT IMMUTABLE PARALLEL SAFE;

If possible, I thought it is better to have a way to define alias type

using hstore like "CREATE TYPE influxdb_tags ALIAS hstore".

15© 2021 Toshiba Corporation

Design - How to refer the influxdb keys

• Using arrow operator, "key"->"value" expression can be used to

refer the "value" of the specified "key" within influxdb_tags and or

influxdb_fields variables.

SELECT

time,

tags->’DEVICE_ID’ DEVICE_ID,

fields->’SIG_A’ SIG_A,

fields->’SIG_B’ SIG_B

FROM

st; time timestamp with time zone,

tags influxdb_tags,

fields influxdb_fields

SELECT

time,

DEVICE_ID,

SIG_A,

SIG_B

FROM

st;

In schema-less designIn existing design

time timestamp with time zone,

DEVICE_ID text,

SIG_A bigint,

SIG_B double precision
The amount of description increases...

Foreign table Foreign table

16© 2021 Toshiba Corporation

Design - How to get all data from foreign table

• In SQL "SELECT *" statement can get all data from a foreign table.

• In this query, we do not specify tag and/or field keys, so FDW is

difficult to output values of keys in separate columns.

• This is not compatible output behavior with existing InfluxDB FDW.

ex.) SELECT * FROM st;

time | tags | fileds

------------------------------+--------------------------------+-------------------------------------

1970-01-01 00:00:00+00 | "DEVICE_ID"=>"DEVICE1" | "SIG_A"=>"1", "SIG_B"=>"0.4"

17© 2021 Toshiba Corporation

Design - How to support aggregation

• Support push-down aggregate function having arguments if

influxdb_tags and/or influxdb_fields refer a const string using arrow

operator '->'.

ex.) SELECT SUM((fields->'SIG_A')::bigint) FROM st

GROUP BY (tags->'DEVICE_ID');

ex.) SELECT COUNT(fields->'SIG_A') FROM st;

• Support also push-down aggregate function having arguments if

influxdb_tags and/or influxdb_fields refer a const string using arrow

operator '->' and they are explicitly casted as bigint, double

precision and boolean. GROUP BY can be specified in the same way.

18© 2021 Toshiba Corporation

Design - Handling wrong referring keys

• InfluxDB behavior for non-existing influxdb keys.

• InfluxDB does not treat as errors and do not return data.

• FDW also apply the same policy as InfluxDB itself.

SELECT fields->'not_exist' FROM st; (no error, no data)

• If influxdb_tags and influxdb_fields are specified in reverse

• Because InfluxDB behaves differently depending on tag or field,

FDW should also change its behavior depending on whether it is

tag or field.

19© 2021 Toshiba Corporation

Design - Handling wrong referring keys (cont.)

• However if the keys are specified incorrectly, FDW may not be

able to get correct results or execute push-down efficiently.

SELECT fields->'tag' FROM st; (no data)

'tag' named field keys not existed in InfluxDB.

SELECT count(tags->'field')

FROM st GROUP BY tags->'field';
wrong results

GROUP BY field key is ignored in InfluxDB,

so the result will not be expected.

20© 2021 Toshiba Corporation

Design - Distinguishing tag and field keys in FDW

• There is a way to get tag key names by using dedicated query

SHOW TAG KEYS. And FDW will get this tag key names by using

this query only when IMPORT FOREIGN SCHEMA is executed.

• FDW can also determine the tag key names by table option 'tags'

manually. But it is not easy to use.

• In the future, we'd like to automate detecting the tags key names.

time DEVICE_ID SIG_A SIG_B

1970-01-01T00:00:01Z DEVICE1 2 0.4

tag key names list

'DEVICE_ID', 'SUB_ID'

Query result

FDW recognize

DEVICE_ID is a tag key

21© 2021 Toshiba Corporation

PostgreSQL

Implementation

Callback routines required for scanning support in FDW

FDW GetForeignRelSize

GetForeignPaths

GetForeignPlan

BeginForeignScan

IterateForeignScan

EndForeignScan

GetForeignUpperPaths

SELECT fields->'SIG_A' FROM st;User query

Remote query SELECT "SIG_A" FROM st;

Need to know actual influxdb key names

to use in remote query.

Variable in foreign table

tag/field keys in InfluxDB measurement

1. Extract influxdb key names

2. Modify push-down decision

to support unstructured expressions

3. Construct remote query

(fields->'SIG_A' "SIG_A")

4. Construct result data into

unstructured type variable

22© 2021 Toshiba Corporation

Implementation - Extract infuxdb key names

• Extract influxdb key names from target list

• In GetForeignRelSize, FDW can get influxdb key names by

extracting const string values which are referred as influxdb_tags

and influxdb_fields variables from PlannerInfo's processed_tlist.

• And the result is stored as a list in FDW private data later use.

SELECT tags->'DEVICE_ID', fields->'SIG_A' , fields->'SIG_B' FROM st;

influxdb key names list = "DEVICE_ID", fields = "SIG_A", "SIG_B"

{TARGETENTRY {OPEXPR ({VAR}{CONST})}}

->fields 'SIG_A' VAR must be influxdb_tags or influxdb_fields type

23© 2021 Toshiba Corporation

Implementation - Modify push-down decision

• Modify push-down decision to support unstructured expressions

{OPEXPR ({VAR} {CONST})}

->

Operator

Expressions to allow push-down for arrow operator ->

influxdb_tags

influxdb_fields

tags / fields

Variable

'SIG_A'

Constant

{{COERCEVIAIO {OPEXPR ({VAR} {CONST})}}}

-> tags / fields 'SIG_A'()::bigint

Expressions to allow push-down for arrow operator -> with explicit casting

ex.) SELECT SUM((fields->'SIG_A')::bigint) FROM st;

ex.) SELECT fields->'SIG_A' FROM st;

24© 2021 Toshiba Corporation

Implementation - Construct remote query

• Construct remote query for unstructured expressions

Scanning for simple base relation

ex.) SELECT tags->'DEVICE_ID', fields->'SIG_A' FROM st;

SELECT "DEVICE_ID", "SIG_A" FROM s;Remote query:

This can be realized by using influxdb key names list obtained

former in GetForeignRelSize.

ex.) SELECT SUM((fields->'SIG_A')::bigint) FROM st;

Scanning with aggregation

SELECT SUM("SIG_A") FROM s;Remote query:

This can be realized by deparsing expression "{AGGREF

({TARGETENTRY {COERCEVIAIO {OPEXPR ({VAR}{CONST})}}})}"

into "Aggregate Function name ("Const")".

25© 2021 Toshiba Corporation

Implementation - Construct result row data

• Constructing result data into unstructured type variable

• In IterateForeignScan, FDW queries to InfluxDB and obtained

values of tags and fields are stored into influxdb_tags variable and

influxdb_fields variable in each by using tag key names list.

ex.) SELECT * FROM st;

time | tags | fileds

------------------------------+---------------------------------+-------------------------------------

1970-01-01 00:00:01+00 | "DEVICE_ID"=>"DEVICE1" | "SIG_A"=>"2", "SIG_B"=>"0.4"

SELECT * FROM s;Remote query:

time tag field field

DEVICE_ID SIG_A SIG_B

1970-01-01T00:00:01Z DEVICE1 2 0.4When we get row data like this.

Packing all tag set into influxdb_tags variable as key => value pairs separated by commas.

It is same manner for influxdb_fields.

26© 2021 Toshiba Corporation

Demonstration

27© 2021 Toshiba Corporation

Consideration

• Further verifications

• Now I could execute only simple query variables and aggregates

in PostgreSQL 13.0 with modified InfluxDB FDW.

CREATE TYPE influxdb_tags ALIAS hstore;

• Improve defining of key-value types based on existing types

• The new key-value types influxdb_tags and influxdb_fields are just

copies of hstore type. So if we can define alias type for existing data

types straightforward, I think it is easier to maintain.

• Improve updating of tag names list

• FDW needs to know tag names in order to distinguish tags and

fields, but FDW currently does not update automatically. So

there is a room for improvement at this point.

28© 2021 Toshiba Corporation

Conclusion

• Schema-less FDW design for InfluxDB

• InfluxDB FDW can be designed for schema-less database by

using unstructured data type based on hstore.

• We do not need to ALTER TABLE anymore.

• I think this design can be applicable to FDWs for other schema-

less databases. But there will be cases it is suitable json type

rather than hstore type for nested data structure.

• Schema-less push-down implementation

• InfluxDB FDW could support schema-less feature based on

existing FDW implementation without losing push-down

functionality. It is important from performance point of view.

29© 2021 Toshiba Corporation

Thank you for listening.

Our project site:

https://github.com/pgspider/

