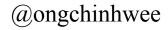
Is Rainfall Getting Heavier? Building a Weather Forecasting Pipeline with Singapore Weather Station Data

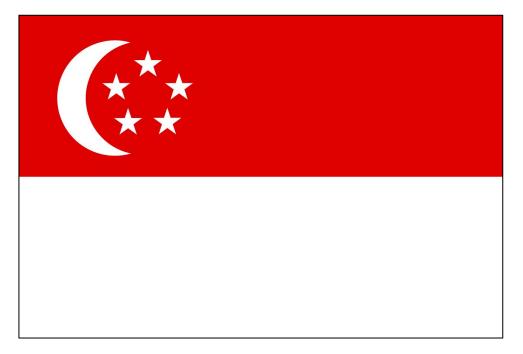
By: Chin Hwee Ong (@ongchinhwee)

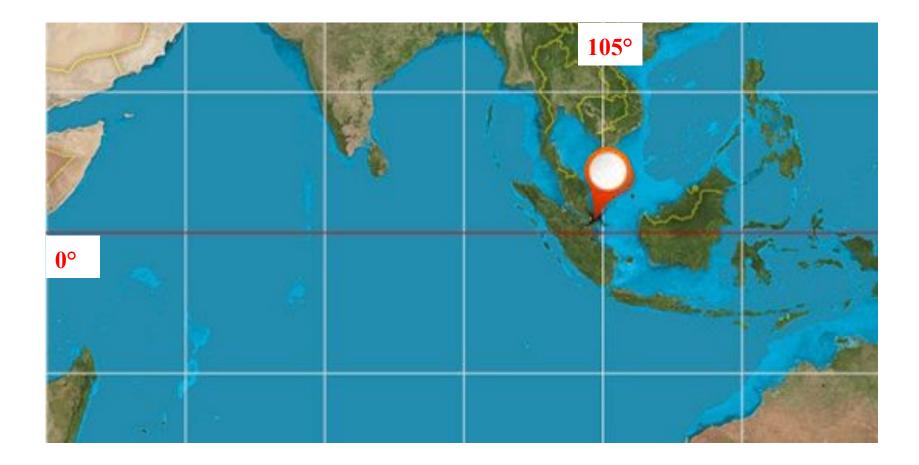
7 February 2021 FOSDEM Python devroom

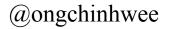
About me


Ong Chin Hwee 王敬惠

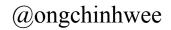
- Data Engineer
- Based in sunny Singapore 🌞
- Aerospace Engineering +


Computational Modelling


• Loves (and contributes to) pandas



Singapore 新加坡: 1°17'22.81"N, 103° 51'0.25"E 北纬1度, 经纬103度



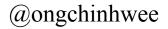
Singapore is a **tropical** country

We have our "four seasons": 1. Cold and Rainy 2. Warm and Dry 3. Extremely Hot 4. Hot and Stormy

BECAUSE FLOODS ONLY HAPPEN ONCE EVERY 50 YEARS

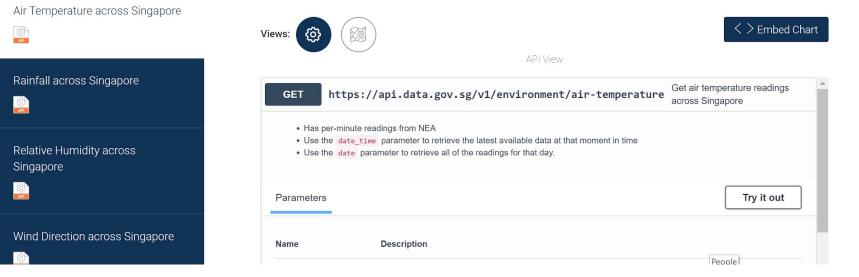

Since 2018, Singapore had more than 20 flash floods.

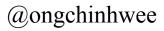
Majority of the floods were caused by **intense rain**.


Source: PUB Singapore

(https://www.pub.gov.sg/drainage/floodmanagement/recentflashfloods)

Could we **predict heavier rainfall** with weather data?


Extracting Weather Data



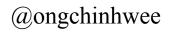
Realtime Weather Readings across Singapore

FILES IN THIS DATASET

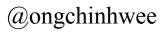
Data.gov.sg - Singapore's Open Data Portal

Realtime Weather Readings across Singapore

Real-time API on Data.gov.sg (Singapore's open data portal)


Open government data available under the Singapore Open Data License

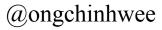
(Almost) minute-by-minute weather station readings


"Let's try to scrap weather data for a specific weather station!"

"How about we scrap <u>multi-day data</u> from the API?"

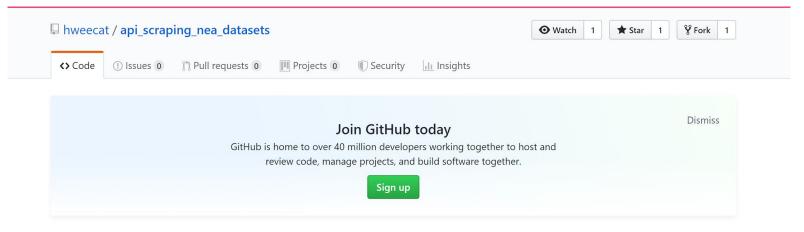
date_time	YYYY-MM-DD[T]HH:mm:ss (SGT)						
string (query)	date_time - YYYY-MM-DD[T]HH:m	m:ss (SGT)					
date string (query)	YYYY-MM-DD 2019-11-23						
	Execute	Clear					
Responses							
Curl							
curl -X GET "https://api.data.gov.sg/v1/environment/air-temperature?date=2019-11-23" -H "accept: application/json"							
Request URL							
https://api.data.go	ov.sg/v1/environment/air-temperature?	late=2019-11-23					

Responses
Curl
curl -X GET "https://api.data.gov.sg/v1/environment/air-temperature?date=2019-11-23" -H "accept: application/json"
Request URL
https://api.data.gov.sg/v1/environment/air-temperature?date=2019-11-23




```
"id": "S100",
      "device_id": "S100",
      "name": "Woodlands Road",
      "location": {
        "latitude": 1.4172,
        "longitude": 103.74855
    },
      "id": "S115",
      "device_id": "S115",
      "name": "Tuas South Avenue 3",
      "location": {
        "latitude": 1.29377,
        "longitude": 103.61843
  ],
  "reading_type": "DBT 1M F",
  "reading_unit": "deg C"
},
"items": [
  {
    "timestamp": "2019-11-23T00:01:00+08:00",
    "readings": [
        "station_id": "S109",
        "value": 25.2
        "station_id": "S117",
        "value": 26
      }.
```

```
"id": "S100",
```


```
"device id": "S100",
      "name": "Woodlands Road",
      "location": {
        "latitude": 1.4172,
        "longitude": 103.74855
    },
      "id": "S115",
      "device_id": "S115",
      "name": "Tuas South Avenue 3",
      "location": {
        "latitude": 1.29377,
        "longitude": 103.61843
  ],
  "reading_type": "DBT 1M F",
  "reading_unit": "deg C"
},
"items": [
    "timestamp": "2019-11-23T00:01:00+08:00",
    "readings": [
        "station_id": "S109",
        "value": 25.2
      },
        "station_id": "S117",
        "value": 26
      },
```

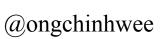
Nested JSON format!


```
"id": "S100",
     "device_id": "S100",
     "name": "Woodlands Road",
     "location": {
       "latitude": 1.4172,
        "longitude": 103.74855
    },
     "id": "S115",
     "device_id": "S115",
     "name": "Tuas South Avenue 3",
     "location": {
       "latitude": 1.29377,
        "longitude": 103.61843
  ],
 "reading_type": "DBT 1M F",
 "reading_unit": "deg C"
},
"items": [
   "timestamp": "2019-11-23T00:01:00+08:00",
   "readings": [
       "station_id": "S109",
       "value": 25.2
      },
       "station_id": "S117",
       "value": 26
      },
```

		index	readings	timestamp
C→	0	0	[{'station_id': 'S77', 'value': 0}, {'station	2017-06-01 00:05:00+08:00
C→ 6 6 6 6 6	1	1	[{'station_id': 'S77', 'value': 0}, {'station	2017-06-01 00:10:00+08:00
	2	2	[{'station_id': 'S77', 'value': 0}, {'station	2017-06-01 00:15:00+08:00
	3	3	[{'station_id': 'S77', 'value': 0.2}, {'statio	2017-06-01 00:20:00+08:00
	4	4	[{'station_id': 'S77', 'value': 0}, {'station	2017-06-01 00:25:00+08:00
	60435	277	[{'station_id': 'S77', 'value': 0}, {'station	2017-12-31 23:35:00+08:00
C⇒ 6 6 6 6 6	60436	278	[{'station_id': 'S77', 'value': 0.2}, {'statio	2017-12-31 23:40:00+08:00
	60437	279	[{'station_id': 'S77', 'value': 0}, {'station	2017-12-31 23:45:00+08:00
	60438	280	[{'station_id': 'S77', 'value': 0.2}, {'statio	2017-12-31 23:50:00+08:00
	60439	281	[{'station_id': 'S77', 'value': 0.2}, {'statio	2017-12-31 23:55:00+08:00
	60440 rov	vs×3c	olumns	

Scraping Meteorological Data from Data.gov.sg APIs

24 commits 2 branche		🗇 0 packages	♥ 0 releases	2 contributors		
Branch: master ▼ New pull requ	Jest			Find file Clone or download -		
hweecat Merge pull request #8	from hweecat/airtemp_rain			Latest commit 823bc3b 5 days ago		
🖹 .gitignore		update timezone code for pandas 0.25		22 days ago		
API_scraping_datagovsg_(airtemp_rainfall).py		add try-except logic for null-data-for-date case		7 days ago		


"Scraping Meteorological Data from Data.gov.sg APIs" Project

Data.gov.sg Weather Data API Scraping

Scraping weather data from APIs via "Requests" library

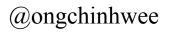
"Requests":

Data.gov.sg Weather Data API Scraping

Currently supported Data.gov.sg APIs:

- 1. Air Temperature (in °C)
- 2. Rainfall (in mm)
- 3. Relative Humidity
- 4. Wind Direction
- 5. Wind Speed

Scrap data for <u>continuous</u> time range + <u>specific</u> weather station


Slow connection

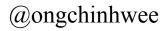
- retry mechanism

from retrying import retry

@retry(wait_exponential_multiplier=1000, wait_exponential_max=10000)

def get_rainfall_data_from_date(date):

Slow connection

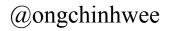

API working but no data for specific date

Code	Details
200	Response body
	Download
	<pre>{ "metadata": { "stations": [] }, "items": [], "api_info": { "status": "healthy" } }</pre>

Slow connection

API working but **no data for specific date**

- Return **empty DataFrame** with same column names as if there were data for specific date



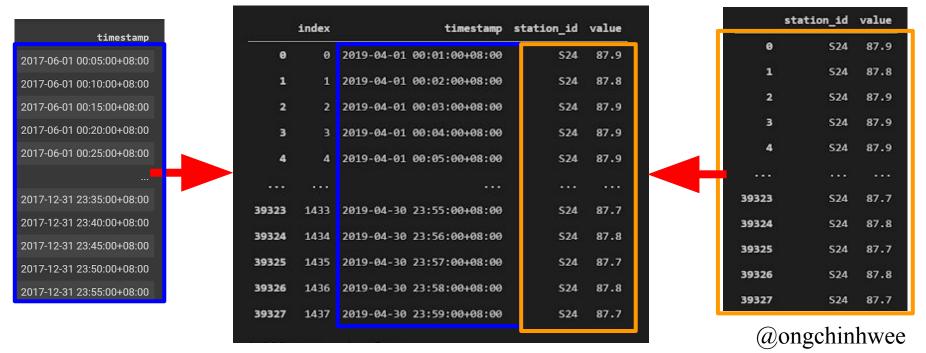
Slow connection

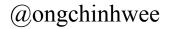
API working but **no data for specific date**

Nested JSON to pandas **DataFrame** conversion

- Extract desired station and readings
- Concatenate them back with **timestamp**

Nested JSON to pandas DataFrame conversion


	index	readings	timestamp		station_id	value
0	0	[{'station_id': 'S77', 'value': 0},	2017-06-01 00:05:00+08:00	e	S109	94.3
1	1	[{'station_id': 'S77', 'value': 0}, {'station	2017-06-01 00:10:00+08:00	1	S117	89.2
2	2	[{ˈstation_id': 'S77', 'value': 0}, {'station	2017-06-01 00:15:00+08:00	2	\$50	87.4
3	3	[{'station_id': 'S77', 'value': 0.2}, {'statio	2017-06-01 00:20:00+08:00	: 3	\$107	85.3
4	4	[{ˈstation_id': 'S77', 'value': 0}, {'station	2017-06-01 00:25:00+08:0	4	S43	85.9
60435	277	[{ˈstation_id': 'S77', 'value': 0}, {'station	2017-12-31 23:35:00+08:00	12	\$100	83.9
60436	278	[{'station_id': 'S77', 'value': 0.2}, {'statio	2017-12-31 23:40:00+08:00	13	\$106	NaN
60437	279	[{ˈstation_id': 'S77', 'value': 0}, {ˈstation	2017-12-31 23:45:00+08:00	14	\$115	NaN
60438	280	[{'station_id': 'S77', 'value': 0.2}, {'statio	2017-12-31 23:50:00+08:00	15	S44	NaN
60439	281	[{'station_id': 'S77', 'value': 0.2}, {'statio	2017-12-31 23:55:00+08:00	16	\$122	NaN


Nested JSON to pandas DataFrame conversion

	readings	timestamp	st	ation_id	value		station_id	va
	station_id': 'S77', 'value': 0}, {'station	2017-06-01 00:05:00+08:00	0	S109	94.3		9 S24	87
	station_id': 'S77', 'value': 0}, {'station	2017-06-01 00:10:00+08:00	1	S117	89.2	1	L \$24	87
	station_id': 'S77', 'value': 0}, {'station	2017-06-01 00:15:00+08:00	2	S50	87.4	2	2 S24	87
	station_id': 'S77', 'value': 0.2}, {'statio	2017-06-01 00:20:00+08:00	3	S107	85.3	3	3 S24	87
	station_id': 'S77', 'value': 0}, {'station	2017-06-01 00:25:00+08:00	4	S43	85.9		s 24	87
			•••					ŝ
	station_id': 'S77', 'value': 0}, {'station	2017-12-31 23:35:00+08:00	12	S100	83.9	39323	3 S24	87
60436	station_id': 'S77', 'value': 0.2}, {'statio	2017-12-31 23:40:00+08:00	13	\$106	NaN	39324	\$ \$24	87
	station_id': 'S77', 'value': 0}, {'station	2017-12-31 23:45:00+08:00	14	\$115	NaN	39325	5 S24	87
60438	station_id': 'S77', 'value': 0.2}, {'statio	2017-12-31 23:50:00+08:00	15	S44	NaN	39326	5 S24	87
	station_id': 'S77', 'value': 0.2}, {'statio	2017-12-31 23:55:00+08:00	16	\$122	NaN	39327	7 S24	87

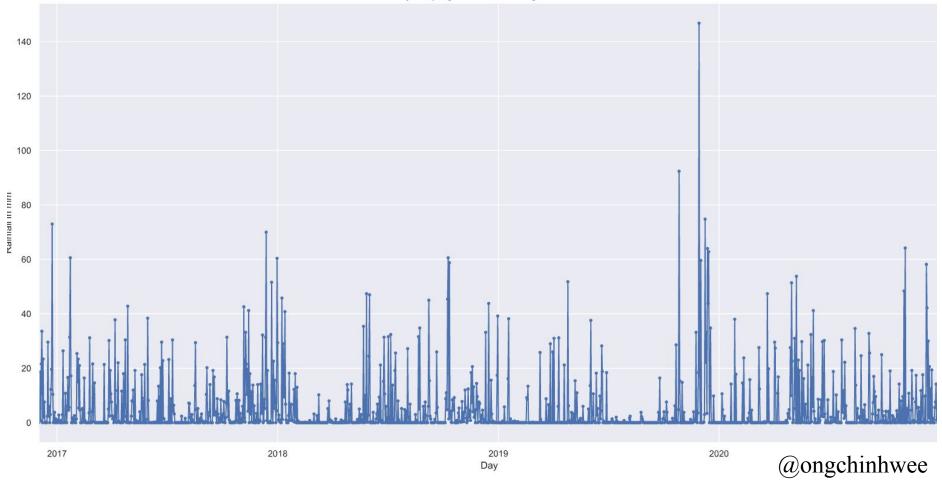
Nested JSON to pandas DataFrame conversion

Singapore Rainfall Data: A 4-Year Time Series Analysis

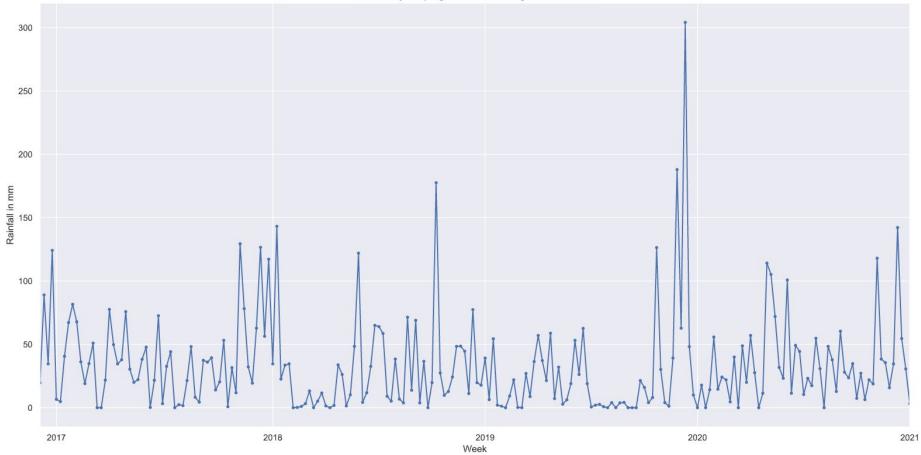
Time Series Analysis of Singapore Rainfall Data

Selected **weather station**:

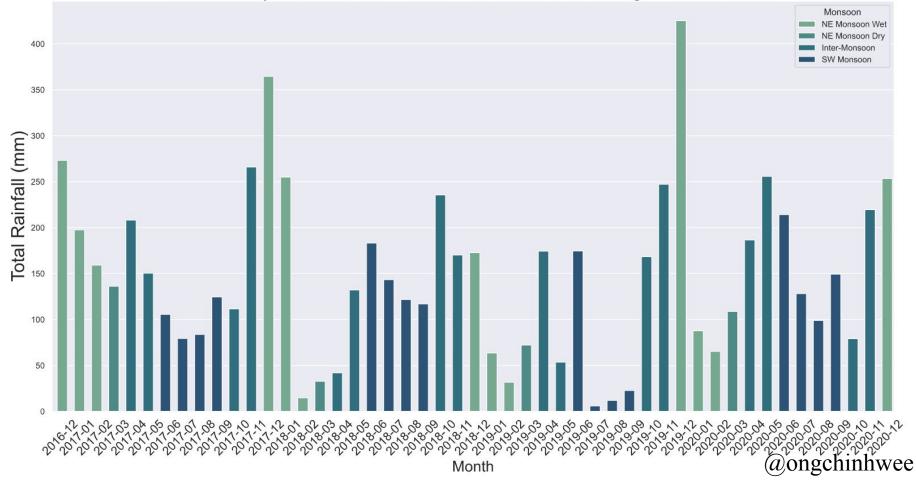
Changi Weather Station (ID: S24)

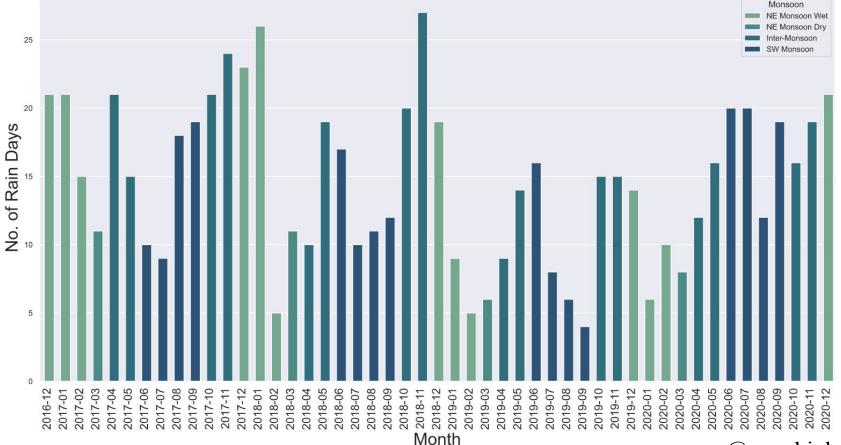

Analysis timeframe:

2 Dec 2016 to 31 Dec 2020 (~4 years)


Objective:

Extract <u>trend</u> and <u>seasonality</u> from
 5-minute rainfall data

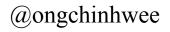

Total daily sampling of rainfall at Changi Weather Station


Total weekly sampling of rainfall at Changi Weather Station

Total Monthly Rainfall from Dec 2016 to Dec 2020 at Changi Weather Station

Monthly number of rain days from Dec 2016 to Dec 2020

Time Series Analysis for Forecasting


Analyse and forecast time series using "statsmodels.tsa"

"statsmodels" library:

Python library for statistical models, tests and exploration

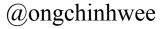
<u>"statsmodels.tsa":</u>

Model classes and functions for Time Series Analysis

Time Series Analysis for Forecasting

Stationarity: Stationary vs Non-Stationary

- Augmented Dickey-Fuller (ADF) Test


Patterns: Trend, Seasonality, Cycles (and Noise)

- Moving Averages
- STL Decomposition

Autocorrelation: Relationship between a time series and a lagged version of itself

Augmented Dickey-Fuller (ADF) Stationary Test

```
from statsmodels.tsa.stattools import adfuller
def ADF test(timeseries):
   dftest = adfuller(timeseries.dropna(), autolag="AIC")
    print("Test statistic = {:.3f}".format(dftest[0]))
    print("P-value = {:.3f}".format(dftest[1]))
    print("Critical values :")
   for k, v in dftest[4].items():
       print(
f'' \{k\}: {v:.3f} - The data is {"not" if v < dftest[0] else ""} stationary
with \{100 - int(k[:-1])\}\ confidence")
```


Augmented Dickey-Fuller (ADF) Stationary Test

Total Daily Rainfall

Test statistic = -5.710

P-value = 0.000

Critical values :

1%: -3.585 - The data is

stationary with 99% confidence

5%: -2.928 - The data is stationary with 95% confidence

10%: -2.602 - The data is

stationary with 90% confidence

Monthly Daily Rainfall

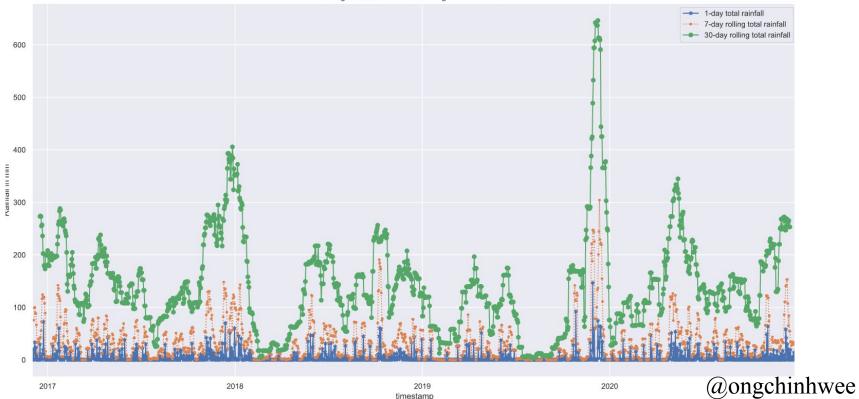
Test statistic = -13.590

P-value = 0.000

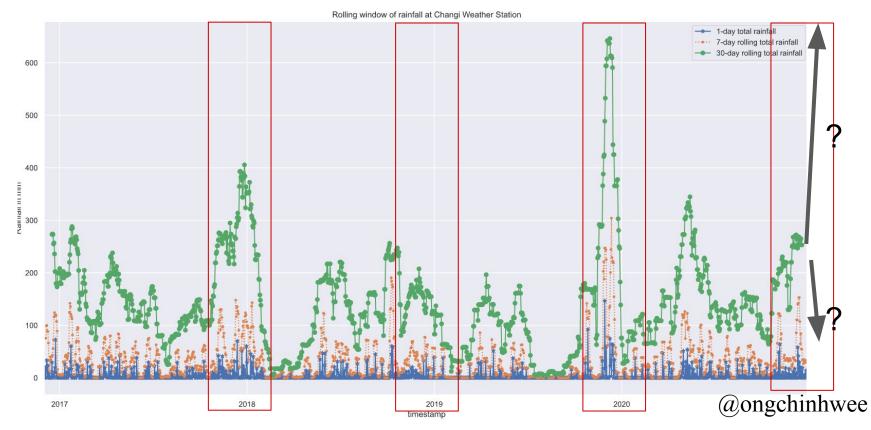
Critical values :

1%: -3.435 - The data is

stationary with 99% confidence


5%: -2.864 - The data is

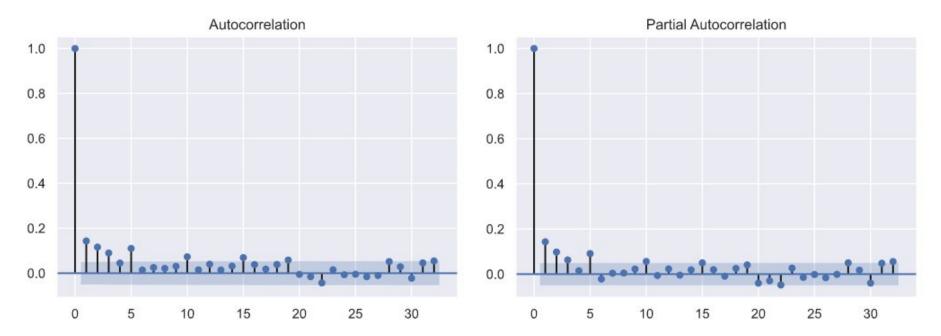
stationary with 95% confidence


10%: -2.256 - The data is stationary with 90% confidence

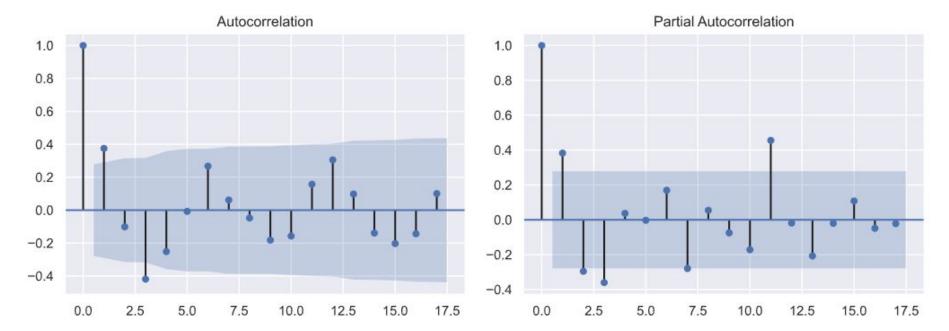
Analyzing Rainfall with Moving Averages

Rolling window of rainfall at Changi Weather Station


Analyzing Rainfall with Moving Averages

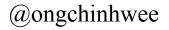

STL Decomposition of Daily Rainfall

STL Decomposition of Monthly Rainfall



Autocorrelation of Daily Rainfall

Low correlation between daily rainfall and its own lagged values.


Autocorrelation of Monthly Rainfall

Most positive: **1st cofficient (r₁)**; Most negative: **3rd coefficient (r₃)** @ongchinhwee

Recap:

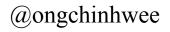
Could we **predict heavier rainfall** with weather data?

Rainfall Forecasting with ARIMA models

ARIMA(p,d,q) model

(AutoRegressive Integrated Moving Average)

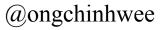
where:


p: order of the **autoregressive** part;

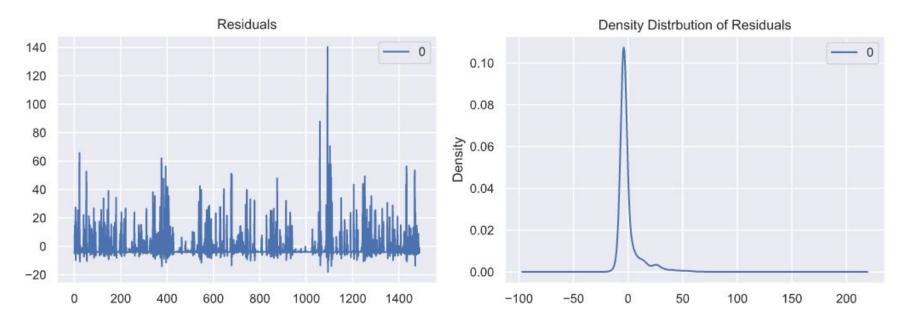
d: degree of first differencing involved;

q: order of the moving average part.

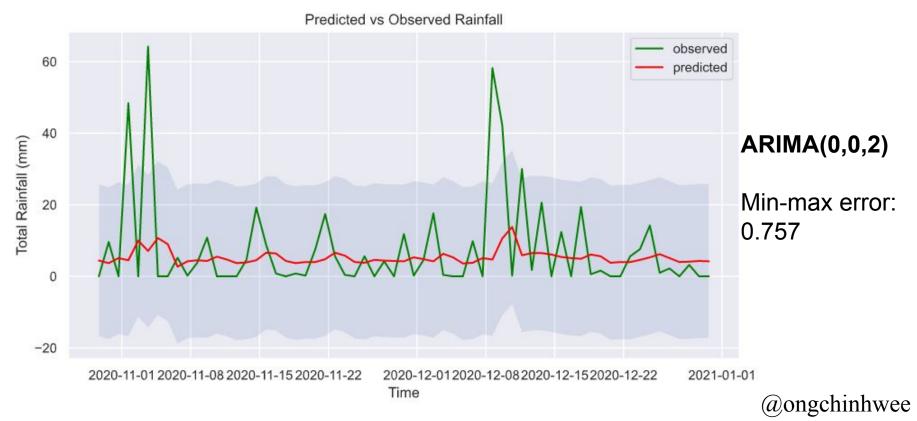
Rainfall Forecasting with ARIMA models


- 1. Apply **rolling forecast technique** with ARIMA(p, d, q) on time series data
- 2. Minimise root-mean-squared-error (RMSE)
- 3. Use <u>optimized order parameters (p, d, q)</u> to run **rolling forecast for next N cycles**
 - a. Daily Forecast: N = 61
 - b. Monthly Forecast: N = 13

Forecasting of Daily Rainfall with ARIMA

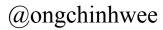

Dep. Variable: y No. Observations: 1490 Model: ARIMA(0, 0, 2) Log Likelihood -5687.965 Date: Thu, 14 Jan 2021 AIC 11383.930 Time: 23:48:12 BIC 11405.156 Sample: 0 HQIC 11391.840
Date:Thu, 14 Jan 2021AIC11383.930Time:23:48:12BIC11405.156Sample:0HQIC11391.840
Time:23:48:12BIC11405.156Sample:0HQIC11391.840
Sample: 0 HQIC 11391.840
- 1490
- 1498
Covariance Type: opg
coef std err z P> z [0.025 0.975]
const 4.8190 0.542 8.890 0.000 3.757 5.881
ma.L1 0.1197 0.020 5.900 0.000 0.080 0.159
ma.L2 0.0972 0.018 5.291 0.000 0.061 0.133
sigma2 121.0694 1.816 66.679 0.000 117.511 124.628
Ljung-Box (L1) (Q): 0.06 Jarque-Bera (JB): 51835.4
Prob(Q): 0.81 Prob(JB): 0.0
Heteroskedasticity (H): 1.66 Skew: 4.3
Prob(H) (two-sided): 0.00 Kurtosis: 30.0

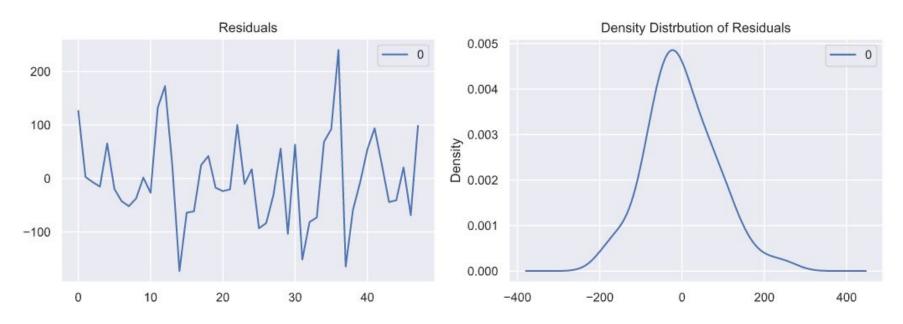
SARIMAX Results



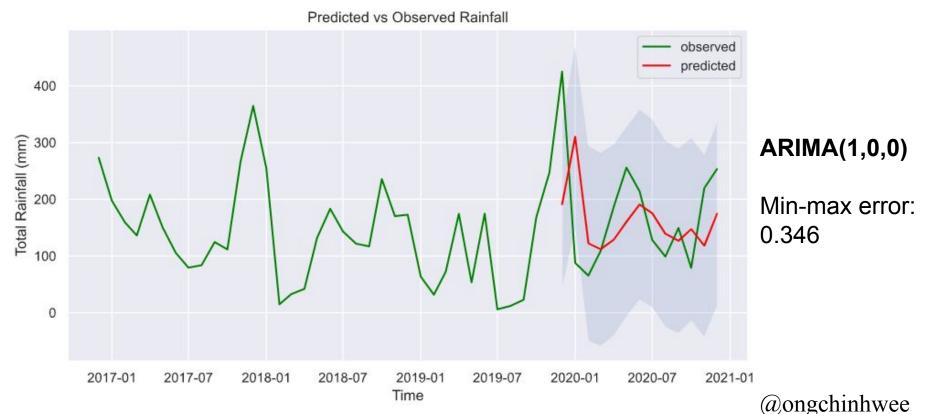
Residual Errors for ARIMA Daily Rainfall Model

ARIMA(0,0,2)

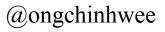

Forecasting of Daily Rainfall with ARIMA


Forecasting of Monthly Rainfall with ARIMA

Dep. Vari	 able:		y N	o. (Dbservations:		48		
Model:		ARIMA(1, 0	, 0) L	og l	_ikelihood		-280.016		
Date:	Tł	nu, 14 Jan	2021 A	IC			566.033		
Time:		23:5	0:13 B	IC			571.646		
Sample:			0 H	QIC			568.154		
			- 48						
Covarianc	е Туре:		opg						
========	================		=======	===:		.===========			
	coef	std err		z	P> z	[0.025	0.975]		
const	146.8506	21.313	6.8	· 90	0.000	105.077	188.624		
ar.L1	0.3792	0.116	3.2	69	0.001	0.152	0.607		
sigma2	6810.5983	1297.728	5.2	48	0.000	4267.097	9354.099		
======================================			======= 0.4	===: 2	======================================	======================================		===== 1.77	
Prob(Q):			0.5	2	Prob(JB):			0.41	
				5	Skew:			0.41	
5				6	Kurtosis:			3.48	
=========		============	========	====			===================		


SARIMAX Results

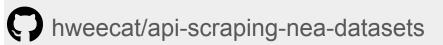
Residual Errors for ARIMA Monthly Rainfall Model ARIMA(1,0,0)



Forecasting of Monthly Rainfall with ARIMA

Key Takeaways

- With climate change, rainfall patterns are becoming more extreme and more challenging to predict
 - Highest rainfall in December 2019 (NE Monsoon)
 - Higher-than-expected rainfall in May 2020 (Inter-Monsoon) - also <u>earlier-than-expected monsoon</u>
- Rainfall data from weather station + ARIMA may not be sufficient enough to predict more "erratic" spikes in daily rainfall



Reach out to me!

- : ongchinhwee
- : @ongchinhwee
- : hweecat
- : https://ongchinhwee.me

And check out my project on:

