Links

- https://gitlab.com/bwidawsk/qemu
 - cxl-2.0v<latest> branch
- https://gitlab.com/bwidawsk/linux
 - cxl-2.0v<latest> branch
- https://github.com/pmem/ndctl
 - cxl-2.0v<latest> branch
- https://www.computeexpresslink.org/download-the-specification

FOSDEM21 – Emulator devroom

ComputeExpress Link inQEMU

Ben Widawsky – Software Engineer

Introduction

Problem Statement

It's difficult.

End Goal

T minus 6 months

- Linux CXL 2.0 memory device drivers within 0 days of spec release
 - Validate the spec
 - Enable hardware vendors and validation
- Have some reusable infra for regression testing
- Potential use for guests
- Masters of our own destiny.

Pre-silicon state of the art

- Hardware
 - No 2.0 FPGAs available
 - No 1.1 hardware available
- Prior art
 - NVDIMM faked it all in Linux
 - QEMU CCIX patches

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

CXL 2.0

SSE SYSTEM SOFTWARE ENGINEERING

CXL 2.0 High Level

- Open industry standard for high bandwidth, low-latency interconnect
- Connectivity between host processor and accelerators/ memory device/ smart NIC
- Addresses high-performance computational workloads across AI, ML, HPC, and Comms segments
 - Heterogeneous processing: scalar, vector, matrix, spatial architectures spanning CPU, GPU, FPGA
 - Memory device connectivity
 - PCIe PHY completely leveraged with additional latency optimization
 - Dynamic multiplexing of 3 protocols
- Based on PCle[®] 5.0 PHY infrastructure
 - Leverages channel, retimers, PHY, Logical, Protocols
 - CXL.io-I/O semantics, like PCIe mandatory
 - CXL.cache Caching Semantics optional
 - CXL.mem Memory semantics optional

CXL 2.0 Usages

Caching Devices / Accelerators

Accelerators with

Memory Buffers

CXL 2.0 Architecture

- CXL 2.0 hierarchy appears like PCle hierarchy
 - Legacy PCI SW and CXL SW sees a RP or DSP with Endpoints below
 - CXL link/interface errors are signaled to RP, not RCEC
 - Port Control Override registers prevent legacy PCle software from unintentionally resetting the device and the link

SO MANY COLORED BOXES.

SENSDERGUE

QEMU

Implementing CXL

PCIe in QEMU

What we all know and love

- Single root complex
 - Endpoints
 - Root ports
 - Switches
- All traffic is funneled to the single host bridge
 - QPI/UPI (not modeled)

SSE SYSTEM SOFTWARE ENGINEERING

Options

- Use a single host bridge
 - Fine for basic driver bring-up
 - Limited for interleave scenarios
 - Risk?
- Replace Q35 with something new
 - A lot of work for not much gain (for CXL)
 - Support Burden
- PXB
 - Good compromise

PCI eXpander Bridge (PXB)

SSE SYSTEM SOFTWARE ENGINEERING

CXL Components

- CXL Type 3 device
 hw/mem/cxl_type3.c
- CXL Root Port
 - hw/pci-bridge/cxl_root_port.c
- CXL PXB
 - hw/pcibridge/pci_expander_bridge.c

CXL utilities

hw/cxl/*

- cxl-component-utils.c
 - DVSEC helpers
 - .cache/mem MMIO handler
- cxl-device-utils.c
 - Device MMIO
 - Memory device MMIO
 - Mailbox MMIO
- cxl-mailbox-utils.c
 - Mailbox command implementations

- pci_expander_bridge.c
 - New CXL PXBisms
 - MMIO for host bridge
 - Windows (*not spec'd)
- cxl_root_port.c
 - PCle root port setup
 - DVSEC initialization

CXL Type 3 Device (Memory Device)

"PCI and NVDIMM had a coherent byte addressable baby..."

- Ben Widawsky

CXL Type 3 Device

- NVDIMM & PCI had a baby...
- Inherits from both interfaces
- Mailbox handling

ACPI

ACPI0016

- Per host bridge
- OSC
- More in the future?
- ACPI0017
 - singleton
 - CEDT
 - CHBS
 - More in the future?
- hw/acpi/cxl.c

Linux Driver Design

CXL Type-3 vs PCI Enumeration

- A driver named "cxl_acpi" attaches to the ACPI0017 instance and is thus informed of the presence of the CEDT.
- Typical ACPI PCI enumeration runs and attaches ACPI0016 as a "companion device" to the corresponding root complex
- PCI Discovery finds CXL Dev and binds a driver named "cxl_mem" by Class Code.
- HDM decoder validation and programming is coordinated via the cxl_acpi_driver that is aware of the ACPI0016 objects that are participating in an interleave set.

CXL.mem Objects

SSE SYSTEM SOFTWARE ENGINEERING

CXL.mem to libnvdimm objects (future)

- . One NVDIMM bus for all CXL.mem persistent memory
 - cxl_acpi is the root driver for x86 and ACPI ARM, other archs / non-ACPI ARM may provide a different root description for CXL.mem resources
- 2. A mapping is a "window + port + dev" tuple
- 3. cxl_acpi attaches to the root of the HDM decoder hierarchy and interfaces with the CXL.mem core for HDM topology reconfiguration.
- 4. libnvdimm and ndctl translate existing NVDIMM provisioning flows to CXL operations

Interfacing with CXL

- Sysfs
 - /sys/bus/cxl/
- IOCTL
 - QUERY
 - SEND
 - Managedcommandset
 - RAW escape command
- Future
 - Error reporting

Putting it all together

- QEMU Emulation
 - Memory region
 - MMIO
 - Mailboxes
- Kernel driver
 - Documentation!
- Tools
- 2.0 spec is available

Outcome

November 10th 2020

PATCHBOMBAULTHETHINGS

Results

- QEMU v2 patches sent
 - Minimal review
- Linux driver v3 sent
 - Moderate review
- Nothing upstream
- Still no hardware to test on
- Still no other viable pre-silicon platform to test on.
- Made our deadline!
- This talk!!!

Call to Action

Missing Pieces

- Linux
 - DOE
 - CDAT
 - DPA mapping (WIP)
 - Interleave
 - Provisioning
 - Recognition
 - Hotplug
 - Hot add
 - Managed remove
 - Asynchronous mailbox
- Userspace
 - Testing

- QEMU
 - Better tests
 - DOE
 - CDAT
 - Upstream/DownstreamPorts
 - Interleave Support
 - Host bridge
 - switch
 - More firmware commands
 - Hotplug support
 - Error testing
 - Interrupt support

- Make Q35 CXL capable
- CXLtypeland2devices
- CXL1.1

Making it useful

- qemu-system-x86_64
 - -machine q35,<cxl>
 - -object memory-backend-file,id=cxl-mem1,share,mem-path=cxltype3,size=512M
 - -device pxb-cxl,id=cxl.0,bus=pcie.0,bus_nr=52,uid=0,len-windowbase=1,window-base[0]=0x4c000000,memdev[0]=cxl-mem1
 - -device cxl-rp,id=rp0,bus=cxl.0,addr=0.0,chassis=0,slot=0
 - -device cxl-type3,bus=rp0,memdev=cxl-mem1,id=cxl-pmem0,size=256M
- CXL utilities part of ndctl being developed
 - https://github.com/pmem/ndctl/tree/cxl-2.0vl

Thanks

- Mahesh Natu CXL architectural diagrams and high level
- Dr. Debendra Das Sharma CXL usages
- Dan Williams Linux diagrams

Asymmetric Protocol => Reduced Complexity

CXL 1.1 -> CXL 2.0

Feature	Description
CXL PCIe End-Point	CXL device to be discovered as PCIe Endpoint Support of CXL 1.1 devices directly connected to Root-Port or Downstream Switch Port
Switching	Single level of switching with multiple Virtual Hierarchies (cascaded possible in a single hierarchy) CXL Memory Fan-Out & Pooling with Interleaving CXL.Cache is direct routed between CPU and device with a single caching device within a hierarchy. Downstream port must be capable of being PCIe.
Resource Pooling	Memory Pooling for Type3 device – Multiple Logical Device (MLD), a single device to be pooled across 16 Virtual Hierarchies.
CXL.cache CXL.mem enhancements	Persistence (Global Persistence Flush), Managed Hot-Plug, Function Level Reset Scope Clarification, Enhanced FLR for CXL Cache/Mem, Memory Error Reporting and QoS Telemetry
Security	Authentication and Encryption – CXL.IO uses PCIe IDE, CXL defines similar capability for CXL.Mem
Software Infrastructure/ API	ACPI & UEFI ECNs to cover notification and management of CXL Ports and devices CXL Switch API for a multi-host or memory pooled CXL switch configuration and management