
1

Links

• https://gitlab.com/bwidawsk/qemu
• cxl-2.0v<latest> branch

• https://gitlab.com/bwidawsk/linux
• cxl-2.0v<latest> branch

• https://github.com/pmem/ndctl
• cxl-2.0v<latest> branch

• https://www.computeexpresslink.org/download-the-specification

https://gitlab.com/bwidawsk/qemu
https://gitlab.com/bwidawsk/linux
https://github.com/pmem/ndctl
https://www.computeexpresslink.org/download-the-specification

FOSDEM21 – Emulator devroom

Compute Express Link in
QEMU
Ben Widawsky – Software Engineer

3

Introduction

4

Problem Statement

It's difficult.

5

End Goal

T minus 6 months

• Linux CXL 2.0 memory device drivers within 0 days of spec release
• Validate the spec

• Enable hardware vendors and validation

• Have some reusable infra for regression testing

• Potential use for guests

• Masters of our own destiny.

6

Pre-silicon state of the art

• Hardware
• No 2.0 FPGAs available

• No 1.1 hardware available

• Prior art
• NVDIMM faked it all in Linux

• QEMU CCIX patches

This Photo by Unknown Author is licensed under CC BY-SA

http://commons.wikimedia.org/wiki/file:qemu_logo.svg
https://creativecommons.org/licenses/by-sa/3.0/

7

CXL 2.0

8

CXL 2.0 High Level

• Open industry standard for high bandwidth, low-latency interconnect

• Connectivity between host processor and accelerators/ memory device/ smart
NIC

• Addresses high-performance computational workloads across AI, ML, HPC, and
Comms segments

• Heterogeneous processing: scalar, vector, matrix, spatial architectures spanning CPU, GPU,
FPGA

• Memory device connectivity
• PCIe PHY completely leveraged with additional latency optimization
• Dynamic multiplexing of 3 protocols

• Based on PCIe® 5.0 PHY infrastructure
• Leverages channel, retimers, PHY, Logical, Protocols
• CXL.io – I/O semantics, like PCIe - mandatory
• CXL.cache – Caching Semantics – optional
• CXL.mem – Memory semantics - optional

9

CXL 2.0 Usages

C X L

Accelerator
NIC

Cache

D
D

R
D

D
R

Processor

Caching Devices /
Accelerators

Usages:
• PGAS NIC
• NIC atomics
Protocols:
• CXL.io
• CXL.cache

C X L

D
D

R
D

D
R

Processor

H
B

M
H

B
M

Accelerator

Accelerators with
Memory

Usages:
• GPU
• FPGA
• Dense Computation
Protocols:
• CXL.io
• CXL.cache
• CXL.memory

Memory Buffers
Usages:
• Memory BW expansion
• Memory capacity expansion
Protocols:
• CXL.io
• CXL.mem

M
e

m
o

ry

M
e

m
o

ry

M
e

m
o

ry

M
e

m
o

ry

C X L

D
D

R
D

D
R

Processor

Memory
BufferCache

(Type 1 Device) (Type 2 Device) (Type 3 Device)

10

CXL 2.0 Architecture

• CXL 2.0 hierarchy
appears like PCIe
hierarchy

• Legacy PCI SW and CXL
SW sees a RP or DSP
with Endpoints below

• CXL link/interface errors
are signaled to RP,
not RCEC

• Port Control Override
registers prevent legacy
PCIe software from
unintentionally resetting
the device and the link

CXL 1.1 Device

CPU CXL1.1 DP

RCiEP
D0 F0

C
X

L

CXL
DVSEC

RCiEP
Or RP

CXL 2.0
Switch

C
X

L

CXL Upstream Switch Port,
Appears as PCIe USP

CXL DSP
Appears as

PCIe DSP
PCIe DSP

CXL 2.0 RP appears
as PCIe RP

P
C

I
e

C
X

L
 2

.0
D

e
vice

EP
D0 F0
CXL

DVSEC

CXL 2.0

hierarchies

CXL 1.1 hierarchy

P
C

Ie

d
e

vice

CXL 2.0 RP

C
X

L

Empty Slot
Hot add
capable

CXL Host Bridge
2

CXL Host Bridge

1

Root Complex
Event CollectorPCIe RP

P
C

I
e

P
C

Ie

d
e

v
ic

e

11

12

QEMU
Implementing CXL

13

PCIe in QEMU

What we all know and love

• Single root complex
• Endpoints

• Root ports

• Switches

• All traffic is funneled to the single
host bridge

• QPI/UPI (not modeled)

Q35 Host bridge
(0:0.0)

Endpoint
(10:0.0)

Root Port
(0:7.0)

Root Port
(0:1c.0)

Endpoint
(20:0.0)

Endpoint
(30:0.0)

down

upstream

down

R
C

iE
P

(0
:3

1.0
) R

C
iE

P
(0

:3
1.1

)

14

PCIe ~2014

Host bridge
(n:0.0)

RCiEP RCiEP

Host bridge
(z:0.0)

Root Port RCiEP

Host bridge
(0:0.0)

Root Port Root Port

Just like CXL

CXL CXL CXL

15

Options

• Use a single host bridge
• Fine for basic driver bring-up

• Limited for interleave scenarios

• Risk?

• Replace Q35 with something new
• A lot of work for not much gain (for CXL)

• Support Burden

• PXB
• Good compromise

16

PCI eXpander Bridge (PXB)

Q35 Host bridge
(0:0.0)

Endpoint
(10:0.0)

Root Port
(0:7.0)

Root Port
(0:1c.0)

Endpoint
(20:0.0)

Endpoint
(30:0.0)

down

upstream

down

R
C

iE
P

(0
:3

1.0
) PCI eXpander Bridge

Root Port
(50:0.0)

Root Port
(50:1.0)

Endpoint
(60:0.0)

Endpoint
(90:0.0)

17

CXL Components

• CXL Type 3 device
• hw/mem/cxl_type3.c

• CXL Root Port
• hw/pci-bridge/cxl_root_port.c

• CXL PXB
• hw/pci-

bridge/pci_expander_bridge.c

CXL eXpander Bridge

CXL RP
(50:0.0)

CXL RP
(50:1.0)

type3
(60:0.0)

type3
(90:0.0)

18

CXL utilities

hw/cxl/*

• cxl-component-utils.c
• DVSEC helpers
• .cache/mem MMIO handler

• cxl-device-utils.c
• Device MMIO
• Memory device MMIO
• Mailbox MMIO

• cxl-mailbox-utils.c
• Mailbox command

implementations

• pci_expander_bridge.c
• New CXL PXBisms

• MMIO for host bridge

• Windows (*not spec’d)

• cxl_root_port.c
• PCIe root port setup

• DVSEC initialization

19

CXL Type 3 Device (Memory Device)

"PCI and NVDIMM had a
coherent byte addressable
baby..."

- Ben Widawsky

NVDIMM

• Byte
addressable

• Direct
mappable

NVME

• PCIe
configurable

• Hot
swappable

20

CXL Type 3 Device

• NVDIMM & PCI had a baby…

• Inherits from both interfaces

• Mailbox handling

21

ACPI

• ACPI0016
• Per host bridge

• _OSC

• More in the future?

• ACPI0017
• singleton

• CEDT
• CHBS

• More in the future?

• hw/acpi/cxl.c

22

Linux
Driver Design

23

CXL Type-3 vs PCI Enumeration

ACPI0017

CEDT

Host

ACPI0016

Port DVSEC

CXL Root
Port

Port DVSEC

CXL Dev
Device DVSEC

Root
Complex

RCiEP

PCI Bridge

PCI Dev

• A driver named “cxl_acpi” attaches to
the ACPI0017 instance and is thus
informed of the presence of the CEDT.

• Typical ACPI PCI enumeration runs
and attaches ACPI0016 as a
“companion device” to the
corresponding root complex

• PCI Discovery finds CXL Dev and
binds a driver named “cxl_mem” by
Class Code.

• HDM decoder validation and
programming is coordinated via the
cxl_acpi_driver that is aware of the
ACPI0016 objects that are
participating in an interleave set.

24

CXL.mem Objects

ACPI

cxl_acpi

ACPI0017

• CEDT

• CHBS

ACPI0016

Linux

cxl_root

cxl_memdev

cxl_mem
(PCI binding)

PCI/CXL.io

pci_dev: root

pci_dev:
bridge

pci_dev:
endpoint

Light blue: sysfs object
Yellow: driver
white: driver object

25

Key

CXL.mem to libnvdimm objects (future)

1. One NVDIMM bus for all CXL.mem
persistent memory

• cxl_acpi is the root driver for x86 and ACPI
ARM, other archs / non-ACPI ARM may
provide a different root description for
CXL.mem resources

2. A mapping is a “window + port + dev”
tuple

3. cxl_acpi attaches to the root of the
HDM decoder hierarchy and
interfaces with the CXL.mem core
for HDM topology reconfiguration.

4. libnvdimm and ndctl translate
existing NVDIMM provisioning flows
to CXL operations

cxl_mem cxl_memdev

cxl_acpi [1,3] cxl_memroot NVDIMM bus

cxl_acpi_port

NVDIMM

cxl_memmapping
[2]

NVDIMM region

WIP Not yet startedDONE

26

Interfacing with CXL

• Sysfs
• /sys/bus/cxl/

• IOCTL
• QUERY

• SEND
• Managed command set

• RAW escape command

• Future
• Error reporting

27

Putting it all together

• QEMU Emulation
• Memory region

• MMIO

• Mailboxes

• Kernel driver

• Documentation!

• Tools

• 2.0 spec is available

28

libcxl

• IOCTL
ndctl/cxl

cxl_mem.ko

• Mailbox

MMIO

Linux

cxl-mailbox-

utils

• Mailbox

MMIO

QEMU

29

Outcome

30

• November 10th 2020

Spec
Released

Linux
Patches
submitted

QEMU
patches
submitted

31

Results

• QEMU v2 patches sent
• Minimal review

• Linux driver v3 sent
• Moderate review

• Nothing upstream

• Still no hardware to test on

• Still no other viable pre-silicon platform to test on.

• Made our deadline!

• This talk!!!

32

Call to Action

33

Missing Pieces

• Linux
• DOE

• CDAT

• DPA mapping (WIP)
• Interleave

• Provisioning
• Recognition

• Hotplug
• Hot add
• Managed remove

• Asynchronous mailbox

• Userspace
• Testing

• QEMU
• Better tests
• DOE

• CDAT
• Upstream/Downstream Ports
• Interleave Support

• Host bridge
• switch

• More firmware commands
• Hotplug support
• Error testing
• Interrupt support
• -----------------------
• Make Q35 CXL capable
• CXL type 1 and 2 devices
• CXL 1.1

34

Making it useful

• qemu-system-x86_64
• -machine q35,<cxl>

• -object memory-backend-file,id=cxl-mem1,share,mem-path=cxl-
type3,size=512M

• -device pxb-cxl,id=cxl.0,bus=pcie.0,bus_nr=52,uid=0,len-window-
base=1,window-base[0]=0x4c0000000,memdev[0]=cxl-mem1

• -device cxl-rp,id=rp0,bus=cxl.0,addr=0.0,chassis=0,slot=0

• -device cxl-type3,bus=rp0,memdev=cxl-mem1,id=cxl-pmem0,size=256M

• CXL utilities part of ndctl being developed
• https://github.com/pmem/ndctl/tree/cxl-2.0v1

35

Thanks

• Mahesh Natu – CXL architectural diagrams and high level

• Dr. Debendra Das Sharma – CXL usages

• Dan Williams – Linux diagrams

36

3737

Backup

38

Asymmetric Protocol => Reduced Complexity

Accelerator CPU
A ccelerator Engine

A ccelerator Caching Agent

A ccelerator Home Agent

Mem ory Agent

CCI Ca ching Agent

CCI H ome Agent

Mem ory Agent

CCI

Core Core Core Core

Accelerator CPU

A ccelerator Engine

Mem ory Agent

Biased
Coherence
Bypass

CXL/ CCI Caching Agent

CXL/ CCI Home Agent

Mem ory Agent

Core Core Core Core

CXL

CXLCache

CCI* Model – Symmetric CCI Protocol

CXL Model – Asymmetric Protocol

CXL Key Advantages:
• Avoid protocol interoperability hurdles/roadblocks
• Enable devices across multiple segments (e.g. client / server)
• Enable Memory buffer with no coherency burden
• Simpler, processor independent device development

38

Compute Express Link™ and CXL Consortium™ are trademarks of the Compute Express Link Consortium.

*Cache Coherent Interface

39

CXL 2.0 Scope: Hot-Plug, Persistence, Switching, and Dis-
aggregationCXL 1.1 -> CXL 2.0

Feature Description

CXL PCIe End-Point CXL device to be discovered as PCIe Endpoint
Support of CXL 1.1 devices directly connected to Root-Port or Downstream Switch Port

Switching Single level of switching with multiple Virtual Hierarchies (cascaded possible in a single hierarchy)
CXL Memory Fan-Out & Pooling with Interleaving
CXL.Cache is direct routed between CPU and device with a single caching device within a hierarchy.
Downstream port must be capable of being PCIe.

Resource Pooling Memory Pooling for Type3 device – Multiple Logical Device (MLD), a single device to be pooled across 16 Virtual
Hierarchies.

CXL.cache
CXL.mem
enhancements

Persistence (Global Persistence Flush), Managed Hot-Plug, Function Level Reset Scope Clarification, Enhanced FLR
for CXL Cache/Mem, Memory Error Reporting and QoS Telemetry

Security Authentication and Encryption – CXL.IO uses PCIe IDE, CXL defines similar capability for CXL.Mem

Software
Infrastructure/ API

ACPI & UEFI ECNs to cover notification and management of CXL Ports and devices
CXL Switch API for a multi-host or memory pooled CXL switch configuration and management

