
Reverse-Engineering of
(binary) File-Formats

From seemingly arbitrary zeros and ones to a PCB file

Thomas Pointhuber Open Source Computer Aided Modeling and Design devroom - FOSDEM’21

https://fosdem.org/2021/schedule/event/reverse_engineering/

My Background

Nov 2016 my first security competition

since then part of the university team1

“I’m a Software Engineer with focus on Security”

2

Aug. 2015 my first KiCad contribution

since Jan. 2016 KiCad Library Maintainer Team

since Oct. 2020 KiCad Lead Development Team

Find a project where I can combine those two worlds:

Reverse-Engineering the Allegro Altium file format

and write a KiCad importer!

1. https://www.sigflag.at

https://www.sigflag.at

General Background

3

they unfollowed, perhaps
too many KiCad tweets :D
@Chaos_Robotic

https://twitter.com/Chaos_Robotic

Step 0: Legal Bases

4

We want to figure out how a proprietary file formats works.

Companies may have something against that work.

Better be safe than sorry.

Law differs by country and change over time.
For reliable statements contact a local lawyer.

Use those informations at your own risk!

Step 0: Legal Bases [Reverse-Engineering]

Black-Box
Reverse-Engineering

“usually, you are allowed to
observe what a program does”

5

inspect

load ✓

save ✓

view ✓

interact✓

document implement

analyze

White-Box
Reverse-Engineering

(Clean-Room Design)

“usually, only allowed for
interoperability reasons”

TALK WITH
YOUR LAWYER!

edit

SPECIFICATION

Step 1: Get a Legal Copy of the Program

“If you don’t own the program, it is hard to reverse-engineer it”

Simple

● Direct access (yourself, friend, company, remote)

● Freeware, Demo-Version, Educational License

● Use different tool with shared codebase

Hard Mode

● Indirect access (files are created by other person)

● Free viewer

6

Step 2: Collect Files for Analysis

“Diversity matters, everyone uses the tool differently!”

● If there exists an ASCII and a Binary format, collect both!

● Search by file extension

● Different program, shared codebase (and file format)?

7

filetype:PcbDocGoogle: extension:PcbDocGitlab:

.PcbDoc .CMPcbDoc.CSPcbDoc

Altium Designer Altium Circuit Studio Altium Circuit Maker

same as? same as?

Step 3: Existing Work and Documentation

8

https://github.com/thesourcerer8/altium2kicad The “standard” converter at that time

https://github.com/matthiasbock/python-altium Correctly handled Altium records

https://github.com/pcjc2/openaltium The only C++ implementation I found

https://github.com/issus/AltiumSharp Extensive, but published after I started

https://gitlab.cern.ch/msuminsk/altium_converter/ Runs inside Altium, creates KiCad footprints

https://github.com/vadmium/python-altium Contains a schematic file documentation!

https://github.com/a3ng7n/Altium-Schematic-Parser Altium schematic → JSON converter

https://github.com/thesourcerer8/altium2kicad
https://github.com/matthiasbock/python-altium
https://github.com/pcjc2/openaltium
https://github.com/issus/AltiumSharp
https://gitlab.cern.ch/msuminsk/altium_converter/
https://github.com/vadmium/python-altium
https://github.com/a3ng7n/Altium-Schematic-Parser

Binary File Analysis

9

Additional Resources

KiCad Importer Basics: Importing into KiCad from CADSTAR by Roberto Fernandez Bautista

Introduction Into File Reverse-Engineering: https://wiki.xentax.com/index.php/DGTEFF

https://fosdem.org/2021/schedule/event/openhard_cadstar/
https://wiki.xentax.com/index.php/DGTEFF

Step 4: Text or Binary?

Easy Hard

Documented Text (XML, Lisp, ...) Encrypted

10

Reverse Engineering

BinaryOpen Source

$ xxd LimeSDR_1v2.PcbDoc | head
00000000: d0cf 11e0 a1b1 1ae1 0000 0000 0000 0000
00000010: 0000 0000 0000 0000 3e00 0300 feff 0900 >.......
00000020: 0600 0000 0000 0000 0000 0000 5801 0000 X...

Null-bytes and other non-printable characters are a good hint toward binary files.

The more blue you see, the easier reversing will be :D https://binvis.io

https://binvis.io

Step 5: Known Document File Format?

11

$ file LimeSDR_1v2.PcbDoc
LimeSDR_1v2.PcbDoc: Composite Document File V2 Document

$ binwalk -b LimeSDR_1v2.PcbDoc

If you have luck, the “file” command is sufficient. To identify embedded files, use “binwalk”.

Composite Document File V2

Data File ZIP File

Record

Data Data

Record

Data Data

STEP File

Section

Data Data

What we see →

1. Known magic bytes?

2. Is it a compound document?

3. Custom file format?

Step 5: Known Document File Format? [Altium]

12
1. https://www.mitec.cz/ssv.html

2. https://github.com/microsoft/compoundfilereader

For my case (Altium PCB)

● Known file format

○ used in Windows

● Existing Viewer1 ✓

● Existing Library2 ✓

https://www.mitec.cz/ssv.html
https://github.com/microsoft/compoundfilereader

Step 6: Compression or Encryption Involved?

● Entropy is the measurement of randomness.

● Encryption results in pseudo randomness.

Can also be used to detect file sections.

13

$ binwalk -E LimeSDR_1v2.PcbDoc

Step 7: Tooling

14

Kaitai Struct2

1. https://hexed.it/

2. https://kaitai.io/

3. https://github.com/gchq/cyberchef

HexEd.it1 ● Web based hex editor

● Nice search utility for data types

● Describe the semantics of a file

● Useful hex view for parsed data (web based)

CyberChef3 ● The Swiss Army Knife for data decoding

● https://hex-works.com - simple hex viewer with diff functionality
● https://github.com/Mahlet-Inc/hobbits - bit based analysis with Kaitai support
● https://github.com/WerWolv/ImHex - hex editor for reverse engineers
● https://www.sweetscape.com/010editor/ - propertiary hex editor

https://hexed.it/
https://kaitai.io/
https://github.com/gchq/cyberchef
https://hex-works.com
https://github.com/Mahlet-Inc/hobbits
https://github.com/WerWolv/ImHex
https://www.sweetscape.com/010editor/

Step 8: Is the File-Format Canonical?

15

$ binwalk -WiU before_change.PcbDoc after_change.PcbDoc

$ radiff2 -sV before_change.PcbDoc after_change.PcbDoc
File size differs 127488 vs 129024
similarity: 0.952
distance: 6162

“How much does a file change on save (with and without editing)”

● A program which saves the file without moving stuff around simplifies our work

If you want numbers (slow!):

Binary diff of multiple binary files:

Step 9: Endianness

16

Big Endian
PowerPC, SPARC

Little Endian
good old x86

12 34 56 78

1. Insert an unique integer into the document using a numeric field (e.g. 305419896)

a. do NOT use a field which could be converted before save (e.g. dimension)

b. ensure that the value is correctly saved (data type is big enough, no integer overflow)

2. Search for this value

78 56 34 12305419896

→

305419896

→

(most files are little endian)

Step 10: Integers

17

Variable-Length Integer
VLQ, LEB128,...

Fixed-Length Integer
two complement

What we need to find out:

● Bit Width Usually, 1, 2, 4 or 8 bytes long
● Signed/Unsigned
● “Encoding” two complement or some variable length integer?

00 20 00 008192 →

00 C08192 → (e.g. used by Protobuf)

00 E0 FF FF-8192 →

Step 11: Floating-Point Numbers

18

Fake Floats
no rounding errors

IEEE 754
Sign, Exponent, Mantissa

What we need to find out:

● Bit Width Usually, 2, 4 or 8 bytes long
● Encoding

00 00 B4 4290. →

84 03 00 0090. = 900 → (e.g. save angle in 0.1°)

“Search for 90, -90, 180, -180, 270, -270, 900, ... using your hex viewer.”

beware of Inf and NaN

Step 12: Internal Units

19

Imperial/US unit
inch, mil, µin

Metric unit
mm, µm, nm

Find out the dependency between the stored value and the displayed value.

● Usually, a multiple of the metric or imperial/US unit
● integer types allow a homogeneous representation of the coordinate system

“To avoid rounding-errors, use the same unit in the program as you test for!”

nm resolution allows storage of
imperial units without rounding issues1mil = 0.0254 mm

1mm = 39.37007874015748 mil

Step 13: Find Strings Inside the Binary

“Just looking at the strings allows us to see what data is presumably in the file”

20

$ strings LimeSDR_1v2.PcbDoc
PCB 6.0 Binary File
ZThis is a version 6.0 file and cannot be read correctly into this
version of tH
he software.
+Close this file immediately without saving.
-Saving this file will result in loss of data.
|RECORD=AdvancedPlacerOptions|PLACELARGECLEAR=50mil|PLACESMALLCLEAR=2
0mil|PLACEUSEROTATION=TRUE|PLACEUSELAYERSWAP=FALSE|PLACEBYPASSNET1=|P
LACEBYPASSNET2=|PLACEUSEADVANCEDPLACE=TRUE|PLACEUSD

Step 14: Strings

21

Length Prefixed

Fixed Length
simple and inflexible

Terminator Based
e.g. zero byte

59 65 6C 6C 6F 77 00 00 00 00 00 00

Y e l l o w
Padding

59 65 6C 6C 6F 77 00

06 00 00 00 59 65 6C 6C 6F 77

Length

Terminator

take care of escaping!

“Don’t forget about enc�ding!”

Step 15: Identify Records

22

04 31 00 00 00 39 0C 00 FF FF FF FF FF FF FF FF FF FF

80 96 98 00 80 96 98 00 2F F5 C4 01 80 96 98 00 A0 86

01 00 00 00 00 00 00 00 00 00 01 00 02 01 00 00 00 00

Record Length
(49)

Record Type
(Track)

Layer
(Mech_1)

Flags
Net
(NC) Subpoly

in
dex

(n
o polygon)

Com
ponent I

ndex

(n
o com

ponent)

Unknown

Unknown

Line Start
(1000mil|1000mil)

Line Width
(10mil)

“Object data is stored in logical proximity to each other”

Step 16: Analyzing the Record Structure

23

Manipulate File
modify data and view change

File Comparison
save modified file and run diff

Documentation
ASCII <-> binary similarity

04 31 00 00 00 39 0C 00 FF FF

04 31 00 00 00 3B 0C 00 FF FF

V1:

V2:

04 31 00 00 00 3B 0C 00 FF FF

Mutate Data

load file

save file

ASCII FILE BINARY
FILEDATAMODEL

assuming a similar
data-structure!

2 Files, 1 Datamodel

Reverse -> Code -> Test -> Repeat

“The simplest explanation is usually the correct one” 1

Tipps

● Start with visual objects. They are easier to validate.

● Write a parser. Do not just document your findings.2

● Use an intermediate data-model for parsing.3

● Check assumptions in your code! Perhaps they are incorrect.

● Don’t be afraid of magic constants. Over time you will find the correct solution.

● Strive for simplicity. Programmers are lazy!1

● Testing, Testing, Testing!

24

1. Also known as Occam's razor.

2. Use Kaitai Struct. Machine readable documentation is both!

3. From this intermediate date-model you can then do the semantic transformation into your internal data-model.

