Overview of the Open Source Vulkan Driver for Raspberry Pi 4

Alejandro Piñeiro Iglesias <apinheiro@igalia.com>
Contents

● Development story
● Current state
● Implementation challenges
● Future plans
● Contributing
Development Story
Development Story

- Driver code name: V3DV.
- Development started in a public fork of Mesa.
- Leverages Mesa Vulkan WSI.
- Expands existing V3D NIR compiler.
- Same kernel interface as V3D.
Development Story

- [Nov 19] Development start.
- [Jan 20] Triangle demo.
- [May 20] Bunch of Sascha Willem’s demos running.
- [Jun 20] Moved development to open repositories.
- [Jul 20] All Quake games working.
Development Story

- [Oct 20] Moved development to Mesa upstream
- [Nov 20] Improved Zink interoperability
- [Nov 20] Vulkan 1.0 conformant
- [Dec 20] Tested on 64-bit, working on performance
Development Story

• Initial early milestone to render on hardware.
• Vulkan CTS to help iterative feature development.
 – Requires minimal functionality in the driver first.
 – Helped improve CTS coverage.
Development Story

- Growing subset of CTS for regression testing.
 - Parallel deqp runner for faster execution.
 - Currently ~10K tests (~10% of CTS pass list).
- Weekly rebases and full CTS runs.
- Assert everywhere philosophy.
- Progress updates via blog posts.
Current State
Current State

- Vulkan 1.0 mandatory feature set complete.
 - A bunch of optional features too.
 - Many optional features and extensions missing.
- We got 1.0 conformance on November
 - Passing ~110K tests (~675k skipped)
 - We keep doing regular full CTS runs
Current State

- VkQuake 1-3 & OpenArena.
- PPSSPP (Vulkan PSP emulator).
- V3DV + Zink
Current State

- Many demos from Sascha Willems working:
Current State

- Not much performance work yet.
 - Mostly for the Quake games.
 - VkQuake3 much faster than its GL1 renderer.
Current State

- Aware of some slow paths in the driver.
 - Particularly for some cases of transfer ops.
 - Possibly underused TFU unit.
Implementation Challenges
Implementation Challenges

- Vulkan expects everything to execute in GPU.
 - Not quite possible for us in a few selected cases.
 - Caused some implementation churn.
 - Incurs in additional coordination (flushes).
Implementation Challenges

- Linear display pipeline in Raspberry Pi 4
 - V3D cannot sample from linear images.
 - For now, we don’t support sampling on swapchains.
 - We should be able to sample in windowed mode when running inside a compositor… worth it?
Implementation Challenges

• Mesa WSI implementation not optimal for us.
 - Optimal path requires PCI GPU and VK_EXT_pci_bus_info.
 - Raspberry Pi display device is not a PCI device.
 • We just want to check that DRI3 device matches.
 - RFC MR with a solution proposed.
Future Plans
Future Plans

• Short term:

More real world testing!!
Future Plans

- Short/Medium term:
 - Explore better TFU unit usage.
 - Better WSI platform support.
 - Optimal implementation of input attachments.
 - Optional features & extensions
 - Assess driver performance and figure out ways to improve it
Future Plans

- Long term:
 - Maybe Vulkan 1.1?
 - Improve code reuse with GLES driver.
 - Maybe port some features to GLES driver:
 - Hardware multisample resolve.
 - Sample rate shading.
 - Robust buffer access.
Contributing
Contributing

- Stable context to enable external contributors.
- V3D 4.2 docs not available to general public.
 - GLES 3.1 open source driver can make up for this.
- Lots of FIXMEs in the source code.
- Many optional features pending.
- Testing and performance feedback.
Contributing

• Resources:
 – #videocore @ freenode
 – mesa-dev mailing list
 – Gitlab issues
Special Thanks

- Mesa community, for NIR, SPIR-V translator, WSI bits, etc.
- Existing Mesa Vulkan driver developers.
- Eric Anholt
- Dave Emett
Q&A

We are hiring: www.igalia.com/jobs