Fosdem 2021

Is Your Elephant a Gazelle?

How to accelerate IPsec elephant flows

Fan Zhang

- What is elephant flow and where is the bottleneck to secure them with open-source IPsec solutions?
- FD.io VPP and VPP IPsec
- VPP Synchronous Crypto Infra Introduction
- VPP Asynchronous Crypto Infra Introduction
- Scale Single IPsec Flow Even More
- Summary

What is Elephant Flow (EP)?

- Extremely large continuous flow in Internet
- 4.7% packets in total, takes
 41.3%

bandwidth

- How Userspace data plane handles IPsec:
 - Isolated and limited per core processing resource, including stack and crypto.
 - Flow-to-core affinity.
- This makes IPsec EP handling difficult

Pain Points of Processing IPsec EP

- Crypto processing requires large amount cycles, while EP is mostly large packets
- Flow-to-core affinity always make one core extremely busy, while other cores relaxing.
- A perfect core extremely powerful to handle the flow also means wasting the cycles most of the time.
- Load-balancing single flow to multiple cores will cause race condition when anti-replay is enabled.
- We propose our answer to resolve the problems with FD.io VPP IPsec

Out of the box	Development Toolkit for Cloud Infra, Discrete Applia	Extensible network functions ance, Virtual Network Functions
Software Architecture Interfaces Networking Extensible	Framework, API & Libraries	Packet Processing Pipeline, configuration driven, composable & extensible
	Wide Device Support	Select Native Drivers & DPDK
	Libraries & Sample Code	Wide Protocol Support
	SDK Model	Plugin Model
Integrations	Realized through	Support for openstack.

FD.io VPP IPsec

- Open-Source Production-ready IPsec Implementation.
- Capable of single server 1Tb IPsec processing.
- Supports AH, ESP (tunnel and transport), ESPoUDP, ESPoGRE.
- Supports major crypto algorithms (AES-CBC, HMAC-SHA*, AES-GCM).
- Supports multiple crypto engine plugins.
- Supports both CPU based crypto (VAES) and Lookaside HW accelerations (QAT)
- Efficient and Cloud-friendly

FD.io VPP Native Crypto Infra (before VPP 20.05)

- A generic infrastructure to provide symmetric crypto service within VPP
- Provides generic API and multiple crypto plugin engines supporting:
 - Key management (add, delete, and update)
 - Crypto operation (cipher, hash, AEAD)
- Advantages
 - Performance
 - Availability
 - Flexible
- Disadvantages
 - No HW offload support
 - Single IPsec Flow crypto Scaling not possible

Scale VPP IPsec Single Flow Throughput With Crypto Offload

- IPsec = packet processing (pps sensitive) + crypto (bps sensitive)
- Offload crypto workload to
 - Dedicated HW (e.g. QAT)
 - Dedicated CPU core(s)

helps gaining more cycles to packet I/O and stack processing.

To support both, we need a generic asynchronous crypto infrastructure.

VPP Async Crypto Infra

- Released in VPP 20.05
- Share the same key management as synchronous crypto infra.
- Provides Generic Enqueue and Dequeue Handler.
- User graph node enqueues the packets to the target engine.
- A dedicated dispatch graph node will handle dequeue.

Adding QAT Hardware acceleration with DPDK Cryptodev

- New DPDK Cryptodev RAW API
 - A more compact data structure.
 - Raw buffer pointer and physical address as input.
 - More sophisticated enqueue/dequeue control method.
 - Customizable status field set callback function design.
- ~15% performance improvement.
- New DPDK Cryptodev Raw API will be released in DPDK 20.11
- The change has already been merged in VPP 20.09 as a DPDK 20.08 patch.

Elephant flow without QAT? SW-scheduler Crypto Engine

- A pure SW crypto engine that utilizes dedicated CPU cores to process crypto workload.
- Crypto worker threads actively scan the frame queue, mark unprocessed frame as "WIP", and processed frame as "Complete".
- Dispatch dequeue first N "Complete" frames.

... Also cloud friendly!

- Crypto Dispatch Node running in polling mode can achieve best possible performance, but it is unfriendly to cloud-native use case.
- That's why we made it supporting interrupt mode.
 - Active polling within an interrupt handling
 - Precise signaling when a crypto frame is enqueued/processed.

Can We Scale Single IPsec Flow Even More?

- With Async Crypto we achieved single IPsec flow processing capability of up to 40Gbps.
- Even with crypto offloaded, there are still heavy I/O and stack processing left.
- Intel[®] DLB or DPDK SW eventdev offers the way to distribute the packets to multiple CPU cores. The packet ordering is maintained from RX to TX.
- With the help of DLB or SW eventdev, we may load-balance most single flow IPsec workload to more cores.

Can We Scale Single IPsec Flow Even More? (cont.)

- Only non-distributable workload (SQN update and check) is handled by a single core.
- Load-balancing more workload to other CPU cores helps regaining more cycles to receive packets.
 - IPsec Stack Processing
 - Crypto
 - Tx (post IPsec)
- Development ongoing, estimate to finish and upstream EOY 2021.
- Our goal is to achieve 100Gbps single IPsec flow processing capability.

Summary

- VPP Synchronous Crypto Infra provides amazing performance to process IPsec workload, but fails to scale with bigger flow.
- We provided asynchronous crypto infra to make SW and HW offloading possible to scale IPsec single flow throughput. The infra supports interrupt mode to make it cloud-native friendly.
- We also provided Cryptodev and SW scheduler async crypto engines.
- Both async crypto engines helped to achieve 40Gbps IPsec elephant flow processing.
- To scale the single IPsec flow even further, we process offload both crypto and most IPsec stack to other cores with Intel® DLB or DPDK Eventdev.

Thank you very much!

Q&A

For questions please contact: roy.fan.zhang@intel.com

#