
Step 1



It’s easy to
comprehend



But it’s a fixed pipeline
Doesn't scale well for complex features: rollbacks, feature builds, cleanup



Your deployment audit is your CI 
history



No central control



Step 2



You get the core properties of 
GitOps
Git interface, desired state is versioned, audit log



Still working in the boundaries of 
your CI engine



Requires a paradigm shift
Additional machinery, eventual deployments



Step 3



Environments captured 
declaratively with the application 
source code



Do you need a new environment?
Add a new environment file



Some config needs change?
Change it in your app repo, make PR and review



Upgrade to a newer application 
template?
Bump the chart version



Drawbacks?
Updating configs in all apps becomes an automation / coms problem



Still working in the boundaries of 
your CI engine



Step 4





No central control
Cannot enforce policies, difficult to share logic across repos



CI is rigid
Predefined pipelines, only so many workflows, triggered by code change



GitOps write collisions





Detaches the release workflow 
from CI
Unlocking advanced features, adding flexibility to refactor workflows, on-demand 
deploys



Adds central control to the release 
workflow
Policy based deploys, fine grained ACL model



Want to get involved?
https://github.com/gimlet-io/gimletd



gimlet.io


