Step 1



It’s easy to
comprehend



But it’s a ixed pipeline

Doesn't scale well for complex features: rollbacks, feature builds, cleanup



Your deployment audit 1s your CI
history



No central control



Step 2



You get the core properties of
GitOps

Git interface, desired state is versioned, audit log



Still working in the boundaries of
your CI engine



Requires a paradigm shift

Additional machinery, eventual deployments



Step 3



Environments captured
declaratively with the application
source code



Do you need a new environment?

Add a new environment file



Some config needs change?

Change it in your app repo, make PR and review



Upgrade to a newer application
template?

Bump the chart version



Drawbacks?

Updating configs in all apps becomes an automation / coms problem



Still working in the boundaries of
your CI engine



Step 4






No central control

Cannot enforce policies, difficult to share logic across repos



Cl 1s rigid

Predefined pipelines, only so many workflows, triggered by code change



GitOps write collisions



code. j

chomge_

Policu Motch

on-demand |
—_— | —HM\H—& &+Ops repo
A
Pull
fk‘é’s ' \
éﬁmps

Qowr‘r‘ol ler




Detaches the release workflow
from CI

Unlocking advanced features, adding flexibility to refactor workflows, on-demand
deploys



Adds central control to the release

workflow
Policy based deploys, fine grained ACL model



Want to get involved?

https://github.com/gimlet-io/gimletd



gimlet.io



