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Introduction to CHERI

• CHERI introduces a new hardware type: the capability
• In addition to integer and floating point

• CHERI capabilities grant access to bounded regions of virtual 
address space
• Protected by tags in register and memory

Watson, et al. CHERI: a research platform deconflating
hardware virtualization and protection. RESoLVE 2012.
Woodruff, et al. The CHERI capability model: Revisiting RISC 
in an age of risk. ISCA 2014.
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Architectural CHERI capabilities
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CHERI capabilities extend pointers with:

• Tags protect capabilities in registers and memory

• Bounds limit range of address space accessible via a pointer

• Permissions limit operations – e.g., load, store, instruction fetch

Actual implementation is compressed to 128-bits with floating-point bounds
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CHERI Operation
• All memory access via capabilities
• Explicit (new instructions):
• Capability load, store, branch, jump

• Implicit (legacy ISA):
• via Default Data Capability (DDC) or Program Counter Capability 

(PCC)
• Capabilities are used and manipulated in capability registers by 

capability instructions
• Manipulations are monotonic (can only reduce bounds and 

permissions)
• Capabilities can be stored in memory, protected by tags
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Capabilities as C pointers

• CHERI capabilities are designed for use as C pointers
• Allowed to be out of bounds between dereferences
• Can store 64-bit integers (untagged)

• Two compilation modes:
• Hybrid: __capability annotation applied to select 

pointers
• Pure-capability: all pointers are capabilities

Chisnall, et al. Beyond the PDP-11: Processor support for a 
memory-safe C abstract machine. ASPLOS 2015.
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CheriABI: Pure-capability process environment

• Built on CheriBSD (FreeBSD modified for CHERI)
• All pointers are capabilities
• Including system call arguments and return values

• Bounds are minimized
• C-language objects
• Pointers provided by the kernel

• Goal: run pure-capability programs with simple recompilation
Watson, et al. CHERI: A Hybrid Capability-System Architecture for Scalable 
Software Compartmentalization. Oakland 2015.
Chisnall, et al. CHERI-JNI: Sinking the Java security model into the C.
ASPLOS 2017.
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Abstract capabilities

How should the systems programmer think about 
bounds?

New concept: abstract capability
• Set of permissions of the process
• Tracks ghost state across swapping, etc
•Constructed and maintained by a collaboration of the 

kernel and language runtime
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System startup
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Execve
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Virtual-memory system
• Programmer visible:

• Provides capabilities to newly mapped regions via mmap() and shmat()
• Alters and frees mappings

• Abstract capability maintenance:
• Ensures correct virtual to physical mappings
• Preserves stored capabilities in swapped pages
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Run-time linker

•Loads and links dynamic libraries
•Resolves symbols and synthesizes capabilities
• Jumps to program entry point

•Provides on-demand loading of libraries and 
supports exception handling
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C runtime

•Objects allocated by malloc() are bounded to 
requested size
•realloc() adjusts bounds or allocates new storage 

as required
• Thread-local storage is bounded
•Currently to per-thread storage

•Compiler generated code sets bounds on stack, 
automatic, and global objects
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System calls
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SYS_READv0 copyout(kaddr, buffer, len);
…
kern_readv(td, fd, {buffer, nbyte});
sys_read(td, uap);



Required source code changes
• Userspace: 1% (~200) of files required changes
• Concentrated in libraries
•Most programs require no changes

• Kernel: <6% of files (~750) required changes
• Pervasive changes to iovec, signal handlers, network 

interface ioctl handlers
• A pure-capability kernel could reduce changes

•Many changes improve code quality
• Upstreaming to FreeBSD and other projects often possible
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Capability bounds minimization (OpenSSL)
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Performance
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• Micro-benchmark performance generally acceptable

• <10% overhead in most cases

• Graph excludes crypto and bit-manipulation outliers



Conclusions

• Full UNIX-like operating system with spatial and 
referential memory safety
•Covers programs, libraries, and linkers
•Kernel access to user memory

• Some fundamental operating system changes required
•Generally non-disruptive

•3rd-party software works:
PostgreSQL database, Webkit
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