
CheriBSD
A memory safe POSIX OS

Brooks Davis, Robert N. M. Watson, Alexander Richardson,
Peter G. Neumann, Simon W. Moore, John Baldwin, David Chisnall,

Jessica Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie, A.
Theodore Markettos, J. Edward Maste, Alfredo Mazzinghi,

Edward Napierala, Robert Norton, Michael Roe, Peter Sewell, Stacey Son,
Jonathan Woodruff

SRI International, University of Cambridge, Microsoft Research, Google, Inc

1

Approved for public release; distribution is unlimited. This work was supported by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”) and HR0011-
18-C-0016 (“ECATS”). The views, opinions, and/or findings contained in this report are those of the authors and should not
be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Introduction to CHERI

• CHERI introduces a new hardware type: the capability
• In addition to integer and floating point

• CHERI capabilities grant access to bounded regions of virtual
address space
• Protected by tags in register and memory

Watson, et al. CHERI: a research platform deconflating
hardware virtualization and protection. RESoLVE 2012.
Woodruff, et al. The CHERI capability model: Revisiting RISC
in an age of risk. ISCA 2014.

2

Architectural CHERI capabilities

3

virtual address (64 bits)

Allocation

Virtual
address
space

25
6-

bi
t

ca
pa

bi
lit

y

length (64 bits)
offset (64 bits)
base (64 bits)

permissions (31 bits)

CHERI capabilities extend pointers with:

• Tags protect capabilities in registers and memory

• Bounds limit range of address space accessible via a pointer

• Permissions limit operations – e.g., load, store, instruction fetch

Actual implementation is compressed to 128-bits with floating-point bounds

v1-
bi

t
ta

g

CHERI Operation
• All memory access via capabilities
• Explicit (new instructions):
• Capability load, store, branch, jump

• Implicit (legacy ISA):
• via Default Data Capability (DDC) or Program Counter Capability

(PCC)
• Capabilities are used and manipulated in capability registers by

capability instructions
• Manipulations are monotonic (can only reduce bounds and

permissions)
• Capabilities can be stored in memory, protected by tags

4

Capabilities as C pointers

• CHERI capabilities are designed for use as C pointers
• Allowed to be out of bounds between dereferences
• Can store 64-bit integers (untagged)

• Two compilation modes:
• Hybrid: __capability annotation applied to select

pointers
• Pure-capability: all pointers are capabilities

Chisnall, et al. Beyond the PDP-11: Processor support for a
memory-safe C abstract machine. ASPLOS 2015.

5

CheriABI: Pure-capability process environment

• Built on CheriBSD (FreeBSD modified for CHERI)
• All pointers are capabilities
• Including system call arguments and return values

• Bounds are minimized
• C-language objects
• Pointers provided by the kernel

• Goal: run pure-capability programs with simple recompilation
Watson, et al. CHERI: A Hybrid Capability-System Architecture for Scalable
Software Compartmentalization. Oakland 2015.
Chisnall, et al. CHERI-JNI: Sinking the Java security model into the C.
ASPLOS 2017.

6

Abstract capabilities

How should the systems programmer think about
bounds?

New concept: abstract capability
• Set of permissions of the process
• Tracks ghost state across swapping, etc
•Constructed and maintained by a collaboration of the

kernel and language runtime

7

System startup

8

RWX 0x0 - 0xFF…FFDDC
RWX 0x0 - 0xFF…FFPCC

NULLC1-31

All tags clear

Power-on state
Re

gi
st

er
s

M
em

or
y

RW- 0x0 - 0xFF…FFDDC
R-X 0x0 - 0xFF…FFPCC

Working setC1-31

RWX 0x0-0x0000007F…FFUserRoot
RWX 0x0 - 0xFF…FFSwapRoot

Early boot

Execve

9

Initial register values

Kernel

Userspace
Thread Stack

Process
arguments

Program binary

NULL DDC
RWX PCC
RW-CSP
RW-C03

auxargs

argv
environ

Arg & environ
strings

Run-time linker

RWX 0x0-0x0000007F…FFUserRoot

Virtual-memory system
• Programmer visible:

• Provides capabilities to newly mapped regions via mmap() and shmat()
• Alters and frees mappings

• Abstract capability maintenance:
• Ensures correct virtual to physical mappings
• Preserves stored capabilities in swapped pages

10

Kernel

Userspace User page

RW- 0x… - 0x…Cap1

R-- 0x… - 0x…Cap2

…Tag bitmap

Tag-free storage

User page

RW- 0x… - 0x…Cap1

R-- 0x… - 0x…Cap2

RWX 0x0 - 0xFF…FFSwapRoot

Run-time linker

•Loads and links dynamic libraries
•Resolves symbols and synthesizes capabilities
• Jumps to program entry point

•Provides on-demand loading of libraries and
supports exception handling

11

C runtime

•Objects allocated by malloc() are bounded to
requested size
•realloc() adjusts bounds or allocates new storage

as required
• Thread-local storage is bounded
•Currently to per-thread storage

•Compiler generated code sets bounds on stack,
automatic, and global objects

12

System calls

13

Kernel

Userspace
Thread Stack

buffer

read(fd, buffer, nbyte);

TCB

fda0

nbytea1
RW- bufferc3

SYS_READv0 copyout(kaddr, buffer, len);
…
kern_readv(td, fd, {buffer, nbyte});
sys_read(td, uap);

Required source code changes
• Userspace: 1% (~200) of files required changes
• Concentrated in libraries
•Most programs require no changes

• Kernel: <6% of files (~750) required changes
• Pervasive changes to iovec, signal handlers, network

interface ioctl handlers
• A pure-capability kernel could reduce changes

•Many changes improve code quality
• Upstreaming to FreeBSD and other projects often possible

14

15

Capability bounds minimization (OpenSSL)

22 25 28 211 214 217 220 223

Size

0

20000

40000

60000

80000

100000

120000

N
um

be
r

of
ca

pa
bi

lit
ie

s

all

stack

malloc

exec

glob relocs syscall kern

Most capabilities
bound small regions

(<<1page)

Stack references

Small number
of whole

shared-object
references
remain in

startup code

Better

Performance

16

se
cu

rit
y-
sh
a

o±
ce
-s
tri
ng

se
ar
ch

au
to
-q
so
rt

au
to
-b
as
icm

at
h

ne
tw

or
k-
di
jk
st
ra

ne
tw

or
k-
pa

tri
cia

te
lco

-a
dp

cm
-e
nc

te
lco

-a
dp

cm
-d
ec

sp
ec
20

06
-g
ob

m
k

sp
ec
20

06
-li
bq

ua
nt
um

sp
ec
20

06
-a
st
ar

sp
ec
20

06
-x
al
an

cb
m
k

in
itd

b-
dy

na
m
ic

-10
+0

+10
+20
+30
+40
+50
+60
+70
+80 instructions cycles l2cache misses

• Micro-benchmark performance generally acceptable

• <10% overhead in most cases

• Graph excludes crypto and bit-manipulation outliers

Conclusions

• Full UNIX-like operating system with spatial and
referential memory safety
•Covers programs, libraries, and linkers
•Kernel access to user memory

• Some fundamental operating system changes required
•Generally non-disruptive

•3rd-party software works:
PostgreSQL database, Webkit

18

Further Reading

http://cheri-cpu.org/
Watson, et al., An Introduction to CHERI, Technical Report UCAM-CL-TR-941,
Computer Laboratory, September 2019.
Watson, et al., CHERI C/C++ Programming Guide, Technical Report UCAM-CL-TR-
947, Computer Laboratory, June 2020.
Watson, et al., Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 8), Technical Report UCAM-CL-TR-951,
Computer Laboratory, Cambridge UK, October 2020.
Davis, et al., CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer
Privilege in the POSIX C Run-time Environment (Extended Version), Technical
Report UCAM-CL-TR-932, Computer Laboratory, Cambridge UK, January 2019.
Filardo, et al., Cornucopia: Temporal Safety for CHERI Heaps, In Proceedings of
Oakland 2020. San Jose, CA, USA, May 18-20, 2020.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Approved for public release. Distribution is unlimited.

19

