

An Open-Source Framework for Developing Heterogeneous Distributed Enclave Applications

Gianluca Scopelliti, Sepideh Pouyanrad, Jan Tobias Mühlberg FOSDEM- Feb 2021

Security in Smart Environments

- ✓ The distributed applications runs on huge software and hardware stacks with multiple heterogeneous vendors everywhere. Which parts are trusted?
- ✓ Sensors come from heterogeneous vendors. Why would you trust them?
- ✓ The cloud is "other people's computers". Why trust them?
- Terminals may be used and managed by health care professionals. How to ensure the authenticity of data?

TEEs: Trusted Execution Environments

- ✓ **Isolation** of sensitive code and data
- ✓ Authentication of the running software (Remote Attestation)
- ✓ Minimise Trusted Computing Base (TCB):
 - ✓ Remove hypervisors, OSs, libraries from TCB
- ✓ **Reduction** of the attack surface
 - ✓ Only trust hardware and your own code

Fig. 1: An Overview of TEE Building Blocks

TEEs: Trusted Execution Environments

https://software.intel.com/content/www/us/en/develop/articles/intel-software-guard-extensions-tutorial-part-1-foundation.html

Intel SGX Helicopter View

https://software.intel.com/en-us/sgx/details

- Protected enclave in application's virtual address space
- Enclave can be entered through restrictive call
 gate only
- ✓ Provides attestation interface and Data Sealing
- Memory encryption defends against untrusted system software and cold boot attacks

Fig. 2: High-level architecture of ARM TrustZone

- Separating the CPU into the *Normal World* and the *Secure World*
- Switching between two worlds through
 Monitor Mode
- Memory and Peripheral Partitioning into Secure/Non-secure regions
- ✓ Provides Secure Boot

Sancus: Strong and Light-Weight Embedded Security

✓ Extends openMSP430 with

strong security primitives

- ✓ Software Component Isolation
- ✓ Cryptography & Attestation
- ✓ Secure I/O through isolation of MMIO ranges
- Cryptographic key hierarchy for software attestation
- ✓ Isolated components are typically very small (< 1kLOC)

✓ Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/

Sancus: Strong and Light-Weight Embedded Security

- Extends openMSP430 with strong security primitives
 - ✓ Software Component Isolation
 - ✓ Cryptography & Attestation
 - ✓ Secure I/O through isolation of MMIO ranges
- Cryptographic key hierarchy for software attestation
- ✓ Isolated components are typically very small (< 1kLOC)

N = Node; *SP* = Software Provider / Deployer *SM* = protected Software Module

✓ Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/

Comparing Hardware-Based Trusted Computing Architectures

							uit	الحار	ance	,					•	atil	oility
	150	latic At	in ta	aling aling Dy	nami Co	ic Ro de co de co	T dential P onfidential P onfidential P Memory Pr Memory Pr	otect	ion.	Proc PHW	2550 001 P10	N TC N TC Nemr DY	B nam Uf	ic Layout TC gradeable gradeatwards gradeatwards	Cour Cour	ipen-S Act	ource ademic ISA Target ISA
AEGIS						\bigcirc	•	\bigcirc	\bigcirc				\bigcirc		\bigcirc		-
ТРМ ТХТ	\bigcirc	•	•	0	•	-		\bigcirc	•	•	0	-	0	•	0	\bigcirc	_ x86_64
TrustZone	lacksquare	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	•	\bigcirc	\bigcirc	ARM
Bastion	lacksquare	\bigcirc		\bullet		\bigcirc	•	\bigcirc	\bigcirc	\bigcirc				•	\bigcirc		UltraSPARC
SMART	\bigcirc		\bigcirc	\bullet	\bigcirc	_	\bigcirc	\bullet	\bigcirc	\bigcirc	_	_	\bigcirc	•	\bigcirc		AVR/MSP430
Sancus 1.0 Soteria Sancus 2.0	•	•	000	•	○ ● ●	•	0000	•	0000	•	$\bigcirc \\ \bigcirc \\$	000	0000	•	•	•	MSP430 MSP430 MSP430
SecureBlue++	\bullet	\bigcirc				\bigcirc	•	\bigcirc	\bigcirc				\bigcirc		\bigcirc	\bigcirc	POWER
SGX						\bigcirc	•	\bigcirc	\bigcirc	\bigcirc					\bigcirc	\bigcirc	x86_64
lso-X	\bullet		\bigcirc	\bullet	\bigcirc	\bigcirc	•	\bigcirc	\bigcirc	\bigcirc					\bigcirc		OpenRISC
TrustLite	lacksquare		\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bullet	\bigcirc	\bigcirc				•	\bigcirc		Siskiyou Peak
TyTAN					\bigcirc		\bigcirc		\bigcirc	\bigcirc				•	\bigcirc		Siskiyou Peak
Sanctum	•	lacksquare		\bullet	\bullet		\bigcirc	\bigcirc	\bigcirc	\bigcirc	lacksquare	\bullet	•	•	\bigcirc		RISC-V

Adapted from "Hardware-Based Trusted Computing Architectures for Isolation and Attestation", Maene et al., IEEE Transactions on Computers, 2017. [MGdC+ 17]

KU LEUVEN DÍSTRINET

• = Yes; • = Partial; • = No; - = Not Applicable

Authentic Execution

✓ Adapted from "Authentic Execution of Distributed Event-Driven Applications with a Small TCB", Noorman et al., [STM 2017]:

"if the application produces a physical output event (e.g., turns on an LED), then there must have happened a sequence of physical input events such that that sequence, when processed by the application (as specified in the high-level source code), produces that output event."

- ✓ Goal: strong assurance of the secure execution of distributed event-driven applications on shared infrastructures with small TCB
- ✓ Its principles can be applied to any TEE -> **Heterogeneity**!

Our Framework Features

- ✓ For event-driven, distributed applications
- ✓ Supported **heterogeneous** TEEs:
 - ✓ SGX with Fortanix EDP
 - ✓ Open-Source Sancus
 - ✓ TrustZone with OP-TEE
- ✓ High Level of **Abstraction** over:
 - ✓ Platform-specific TEE layer
 - ✓ Secure communication API between modules
- ✓ Automatic deployment and Remote Attestation

A simple and secure distributed application using Sancus and SGX

FOSDEM 21

whoami

Gianluca Scopelliti

PhD student, ESR1 of the 5GhOSTS project promoted by KU Leuven and Ericsson

• *"Integrity assurance for multi-component services in 5G networks"*

node_sancus2

Setup

node_sancus1

Setup

node_sancus2

node_sancus1

node_sancus2

node_sancus1

Setup

node_sancus2

node_sancus1

Store # of button presses, interface for deployer and external users

node_sancus2

Deployment & configuration of the modules and their connections

node_sancus1

node_sgx

Setup

node_sancus2

Setup

node_sancus1

node_sancus1

node_sancus2

> Send binaries to nodes

- > Send binaries to nodes
- > Load modules

node_sancus1

node_sancus2

- > Send binaries to nodes
- > Load modules
- > Remote Attestation
 - » Establishment of secure channels using module keys

Establishment of connections

node_sancus1

node_sancus2

Establishment of connections

node_sancus1

node_sancus2

node_sgx

Establishment of connections

Establishment of connections

Establishment of connections

Establishment of connections

Establishment of connections

Source code snippet: controller

$\bigcirc \bigcirc \bigcirc$

//@ sm_output(toggle_led)
//@ sm_output(increment_presses)

//@sm_input

pub fn button_pressed(_data : &[u8]) {
 info!("Remote button has been pressed");

// toggle LED
toggle_led(&[]);

// increment occurrences on db
increment_presses(&[]);

Deployment descriptor snippet: connections

```
000
```

```
"connections": [
```

```
{
```

"from_module": "button_driver",
"from_output": "button_pressed",
"to_module": "controller",
"to_input": "button_pressed",
"encryption": "spongent"

```
},
,
```

"name": "init-server",
"direct": true,
"to_module": "webserver",
"to_input": "init",
"encryption": "aes"

Demo!

github.com/gianlu33/authentic-execution

Security discussion

> Strong integrity

- >> The LED can be **only** toggled by a button press
- » The value stored in the db can be **only** incremented by a button press

Security discussion

> Strong integrity

- >> The LED can be **only** toggled by a button press
- >> The value stored in the db can be **only** incremented by a button press
- > **Confidentiality** of application state and sensitive data
 - » TEEs
 - » Secure communication channels

Security discussion

> Strong integrity

- >> The LED can be **only** toggled by a button press
- >> The value stored in the db can be **only** incremented by a button press
- > **Confidentiality** of application state and sensitive data
 - » TEEs
 - » Secure communication channels
- > Availability out of scope
 - » nothing happens if, e.g., an event is lost

Future work

available soon
 with Rust

More flexible deployment tools

- stop/migrate a module
- deploy new modules after first deployment

- Remote Attestation using Fortanix CCM
- performance
- sealing

