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Specialization = High Performance

▌Networking
 Sandstorm

 Minicache

 ClickOS

▌Efficient run-time environments
 MirageOS

 Ling

 runtime.js

▌Hardware
 TPUs

 Movidius

 FPGAs
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Background: Unikernels
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The Potential of Unikernels

▌Fast instantiation, destruction and migration time
 10s of milliseconds or less (and as little as 2.3ms)

(LigthVM [Manco SOSP 2017], Jitsu [Madhvapeddy, NSDI 2015])

▌Low memory footprint
 Few MBs of RAM or less (ClickOS [Martins NSDI 2014])

▌High density
 8k guests on a singlex86  server (LigthVM [Manco SOSP 2017])

▌High Performance
 10-40Gbit/s throughput with a single guest CPU

(ClickOS [Martins NSDI 2014], Elastic CDNs [Kuenzer VEE 2017])

▌Reduced attack surface
 Small trusted compute base
 Strong isolation by hypervisor
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Unikernels in Action

▌Today OS/VM/container:
lots of unnecessary code
= lots of overhead,
   big attack vector

Nginx 

Kernel 

Services 

Libraries 

User Application 

memcached bash 3rd Party 
Applications 

libc 
libssl 

ssh 
init 

ext4 netfront 
blkfront 

Nginx 

memcached 

bash 

libc 
libssl 

ssh 
init 

ext4 

netfront 
blkfront 

▌Specialized System: only what’s needed 
is there but lots of development time!
(has to be done manually,
  may require changing code)

Nginx 

Kernel 

Services 

Libraries 

User Application 

memcached bash 3rd Party 
Applications 

libc 
libssl 

ssh 
init 

ext4 netfront 
blkfront 

unused!

unused!

unused!

?

How to build efficient & tiny systems 
with minimum efforts?
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Unikernel: Dichotomy of Performance and Portability

(1) Transparently: applications are ported and automatically benefit 
from lower boot times, less memory consumption, etc.

(2) Modified: applications are hooked into high performance APIs at the 
right level in the software stack
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Ofcourse, let me use Linux?
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Then, maybe existing unikernels?

(1) They require significant expert work to build and to 
extract high performance; such work has to for the 

most part be redone for each target application.

(2) They are often non-POSIX compliant, requiring port- 
ing of applications and language environments. 

(3) The (uni)kernels themselves, while smaller, are still monolithic and 
hard to customize 
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Unikraft: Unikernel Framework

Motivation
▌Support wide range of use cases

▌Simplify building and optimizing

▌Simplify porting of existing applications

▌Common and shared code base for Unikernel projects: “win-win”

▌Support for many hypervisors, bare-metal nodes, and CPU architectures

▌Concept: “Everything is a library”
 Decomposed OS functionality

▌Two components:
1. Library Pool
2. Build Tool
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Transparently: applications are ported and automatically benefit from 
lower boot times, less memory consumption, etc.
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Unikraft: Run a Binary Compatible App
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Unikraft: Compile an App Transparently

App native build 
system
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files
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Compile Time
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What Unikraft Could Transparently Support

Syscalls required by a 
set of 30 popular 
server apps vs. 
Syscalls currently 
supported by Unikraft
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Modified: applications are hooked into high performance APIs at the 
right level in the software stack
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Unikraft:  Native Support of Applications 
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Unikraft: Support yet another App
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Unikraft: Memory Efficiency
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Unikraft: Ease of Use
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Unikraft is even easier to use!

▌kraft: a new companion tool!
 Improves user & developer experience

 Lists and clones available Unikraft libraries
from GitHub organization

 Building and inital configuration

 Testing und Benchmarking

 Get https://github.com/unikraft/kraft/

 ..and start building your Unikernel:

> kraft update

> kraft list

> kraft init –a APPNAME
> kraft build

> kraft run –p kvm
Image: https://openclipart.org/detail/284486/strong-arm
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AWS Deployment
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Unikraft: Nginx Port
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Unikraft on AWS
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Unikraft NGINX Throughput vs. Linux on AWS
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Unikraft Throughput vs. Linux: CPU Cores
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Unikraft NGINX Memory Use vs. Linux on AWS
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Could be leveraged to build our own hyper 
efficient Lambda services on AWS bare 

metal infrastructure
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Find us online

https://github.com/unikraft

http://unikraft.org 

<minios-devel@lists.xenproject.org>

<unikraft@listserv.neclab.eu>

@UnikraftSDK
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Unikraft is a highly modular library 
pool and build system allowing users 
to seamlessly build extremely 
specialized and efficient images 
(VMs, containers, bare metal) 
targeting particular applications.




