
Sharan Santhanam <sharan.santhanam@neclab.eu>
Felipe Huici <felipe.huici@neclab.eu>
Alex Jung <a.jung@lancs.ac.uk>
Simon Kuenzer <simon.kuenzer@neclab.eu>

Severely Debloating Cloud Images
with Unikraft

This work has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreements no. 871793 (“ACCORDION”) and 825377 (“UNICORE”). This
work reflects only the author’s views and the European Commission is not responsible for any use
that may be made of the information it contains.

FOSDEM 2021

2 © NEC Corporation 2019

Specialization = High Performance

▌Networking
 Sandstorm

 Minicache

 ClickOS

▌Efficient run-time environments
 MirageOS

 Ling

 runtime.js

▌Hardware
 TPUs

 Movidius

 FPGAs

3 © NEC Corporation 2019

Background: Unikernels

4 © NEC Corporation 2019

The Potential of Unikernels

▌Fast instantiation, destruction and migration time
 10s of milliseconds or less (and as little as 2.3ms)

(LigthVM [Manco SOSP 2017], Jitsu [Madhvapeddy, NSDI 2015])

▌Low memory footprint
 Few MBs of RAM or less (ClickOS [Martins NSDI 2014])

▌High density
 8k guests on a singlex86 server (LigthVM [Manco SOSP 2017])

▌High Performance
 10-40Gbit/s throughput with a single guest CPU

(ClickOS [Martins NSDI 2014], Elastic CDNs [Kuenzer VEE 2017])

▌Reduced attack surface
 Small trusted compute base
 Strong isolation by hypervisor

5 © NEC Corporation 2019

Unikernels in Action

▌Today OS/VM/container:
lots of unnecessary code
= lots of overhead,
 big attack vector

Nginx

Kernel

Services

Libraries

User Application

memcached bash 3rd Party
Applications

libc
libssl

ssh
init

ext4 netfront
blkfront

Nginx

memcached

bash

libc
libssl

ssh
init

ext4

netfront
blkfront

▌Specialized System: only what’s needed
is there but lots of development time!
(has to be done manually,
 may require changing code)

Nginx

Kernel

Services

Libraries

User Application

memcached bash 3rd Party
Applications

libc
libssl

ssh
init

ext4 netfront
blkfront

unused!

unused!

unused!

?

How to build efficient & tiny systems
with minimum efforts?

6 © NEC Corporation 2019

Unikernel: Dichotomy of Performance and Portability

(1) Transparently: applications are ported and automatically benefit
from lower boot times, less memory consumption, etc.

(2) Modified: applications are hooked into high performance APIs at the
right level in the software stack

7 © NEC Corporation 2019

Ofcourse, let me use Linux?

8 © NEC Corporation 2019

Then, maybe existing unikernels?

(1) They require significant expert work to build and to
extract high performance; such work has to for the

most part be redone for each target application.

(2) They are often non-POSIX compliant, requiring port-
ing of applications and language environments.

(3) The (uni)kernels themselves, while smaller, are still monolithic and
hard to customize

10 © NEC Corporation 2019

Unikraft: Unikernel Framework

Motivation
▌Support wide range of use cases

▌Simplify building and optimizing

▌Simplify porting of existing applications

▌Common and shared code base for Unikernel projects: “win-win”

▌Support for many hypervisors, bare-metal nodes, and CPU architectures

▌Concept: “Everything is a library”
 Decomposed OS functionality

▌Two components:
1. Library Pool
2. Build Tool

12 © NEC Corporation 2019

LI
BC

LA
YE

R
application

PO
SI

X
CO

M
PA

T
LA

YE
R

O
S

PR
IM

IT
IV

ES
LA

YE
R

PL
AT

FO
RM

LA
YE

R

musl newlib

syscall-shim

posix-fdtab posix-process pthread…
posix-socket vfscore

lw
ip

N
W

 S
TA

CK
S

m
tc

p

uknetdev

9p
fs

FI
LE

SY
ST

EM
S

ra
m

fs

ukblockdev

ex
t4

uksched

uk
pr

ee
m

pt

SC
HE

DU
LE

RS

uk
co

op

ukboot

dy
na

m
ic

bo
ot

BO
OT

ER
S

uk
co

op

ukalloc

bu
dd

ya
llo

c

M
EM

 A
LL

O
CA

TO
RS

tin
yu

al
lo

c

tls
f

m
im

al
lo

c

os
ca

sr

KV
M virtio-net

clock
virtio-block

memregion

XE
N netfront

clock
blockfront

memregion
…

8

1

2

3
4 5 6

7

13 © NEC Corporation 2019

Transparently: applications are ported and automatically benefit from
lower boot times, less memory consumption, etc.

14 © NEC Corporation 2019

Unikraft: Run a Binary Compatible App

15 © NEC Corporation 2019

Unikraft: Compile an App Transparently

App native build
system

.obj and .a
files

statically
compile

U
ni

kr
af

t
st

ac
klink

(Unikraft
Build system)

m
us

l
(P

O
SI

X
)

sy
sc

al
l

sh
im

16 © NEC Corporation 2019

Compile Time

19 © NEC Corporation 2019

What Unikraft Could Transparently Support

Syscalls required by a
set of 30 popular
server apps vs.
Syscalls currently
supported by Unikraft

20 © NEC Corporation 2019

Modified: applications are hooked into high performance APIs at the
right level in the software stack

21 © NEC Corporation 2019

Unikraft: Native Support of Applications

22 © NEC Corporation 2019

Unikraft: Support yet another App

23 © NEC Corporation 2019

Unikraft: Memory Efficiency

24 © NEC Corporation 2019

Unikraft: Ease of Use

25 © NEC Corporation 2019

Unikraft is even easier to use!

▌kraft: a new companion tool!
 Improves user & developer experience

 Lists and clones available Unikraft libraries
from GitHub organization

 Building and inital configuration

 Testing und Benchmarking

 Get https://github.com/unikraft/kraft/

 ..and start building your Unikernel:

> kraft update

> kraft list

> kraft init –a APPNAME
> kraft build

> kraft run –p kvm
Image: https://openclipart.org/detail/284486/strong-arm

26 © NEC Corporation 2019

AWS Deployment

27 © NEC Corporation 2019

Unikraft: Nginx Port

28 © NEC Corporation 2019

Unikraft on AWS

29 © NEC Corporation 2019

Unikraft NGINX Throughput vs. Linux on AWS

0

10000

20000

30000

40000

50000

60000

70000

80000

1B 128B 512B 1kB

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

Payload Size

Debian (m3.medium) Unikraft (m3.medium) Debian (m3.large) Unikraft (m3.large)

2.
5X

 b
o

o
st

2X
 b

o
o

st
Unikraft provides significant

performance gains

Unikraft allows for running
cheaper instance at same

performance levels

30 © NEC Corporation 2019

Unikraft Throughput vs. Linux: CPU Cores

0

10000

20000

30000

40000

50000

60000

Unikraft (one core) Debian (two cores)

Th
ro

ug
ht

pu
t (

re
qs

/s
ec

)
SMP (multi-core) support in
Unikraft would further boost

performance

2X
 b

o
o

st

31 © NEC Corporation 2019

Unikraft NGINX Memory Use vs. Linux on AWS

0

10

20

30

40

50

60

70

80

Unikraft Debian Alpine

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

6X
 r

ed
uc

ti
o

n

Could be leveraged to build our own hyper
efficient Lambda services on AWS bare

metal infrastructure

33 © NEC Corporation 2019

35 © NEC Corporation 2019

Find us online

https://github.com/unikraft

http://unikraft.org

<minios-devel@lists.xenproject.org>

<unikraft@listserv.neclab.eu>

@UnikraftSDK

36 © NEC Corporation 2019

Unikraft is a highly modular library
pool and build system allowing users
to seamlessly build extremely
specialized and efficient images
(VMs, containers, bare metal)
targeting particular applications.

