Leveraging virtio-vsock in the cloud and containers

FOSDEM 2021 Virtual Conference
6th of February 2021

Andra Paraschiv, Amazon Web Services
Stefano Garzarella, Red Hat
Agenda

Introduction

Use Cases
- AWS Nitro Enclaves
- Kata Containers
- libkrun

Developing with AF_VSOCK
- Languages Bindings
- Communication Debugging
- Performance Evaluation

Next Steps
- SOCK_SEQPACKET
- Namespaces
- Multi-queue
- Shared Memory
Vsock - Overview

- POSIX Socket API (e.g. socket, bind, listen, connect)
- SOCK_STREAM / SOCK_DGRAM
- CID (Context Identifier) and port
 - Well-known CIDs
 - VMADDR_CID_ANY (0xFFFFFFFF)
 - VMADDR_CID_HYPervisor (0)
 - VMADDR_CID_LOCAL (1)
 - VMADDR_CID_HOST (2)
 - Privileged ports (port < 1024)
- Multi transports - support for nested VMs
Vsock - Use Cases

Network Applications
(e.g. SOCK_STREAM apps)

Guest Agents
(e.g. QEMU guest agent, Kata containers agent)

Hypervisor Services
(e.g. file sharing)
AWS Nitro Enclaves

- Isolated and trusted environment
- Cryptographic attestation
- Open source
- Portable across operating systems and architectures
- Integrated with AWS Key Management Service (KMS) and AWS Certificate Manager (ACM)
AWS Nitro Enclaves (2)
AWS Nitro Enclaves - Serial Console Access (Demo)
AWS Nitro Enclaves - Vsock Sample (Demo)
Kata Containers

- **secure** container runtime
- **lightweight** virtual machines
 - feel and perform like containers
- **stronger workload isolation**
 - hardware virtualization technology as a second layer of defense

https://katacontainers.io
Kata Containers using serial ports

- **guest processes**
 - serial port device

- **host processes**
 - Unix socket

- **Portable solution**

- **Cons**
 - one process at a time can access serial link
 - serial port and Unix socket must be multiplexed by using kata-proxy and Yamux

https://katacontainers.io/learn
© 2021, Red Hat, Inc.
Kata Containers using VSOCK

- Listen sockets can accept connections from multiple clients
 - does not require multiplexers (kata-proxy and Yamux)
- High density
 - kata-proxy uses ~4.5MB per POD
- Reliability
 - if kata-proxy dies all POD connections get broken

https://github.com/kata-containers/documentation/blob/master/design/Vsocks.md

© 2021, Red Hat, Inc.
Kata Containers demo
libkrun

- **Dynamic library** to run processes in a partially isolated environment
 - HW Virtualization
 - Linux KVM
 - macOS Hypervisor.Framework
 - VMM with a minimum amount of emulated devices
 - virtio-console
 - virtio-fs
 - virtio-vsock
 - virtio-balloon
 - Transparent Socket Impersonation (TSI)

[GitHub Link](https://github.com/containers/libkrun)
libkrun: Transparent Socket Impersonation (TSI)

- VMs have network connectivity without a virtual NIC
- Network connections encapsulated using VSOCK sockets
 - Guest kernel
 - Intercepts sockets syscall
 - Forward requests to the host using virtio-vsock
 - libkrun (VMM in the host)
 - Receives requests through virtio-vsock
 - behaves like the application in the guest
 - making the same sockets syscall in the host
- Fully transparent for application running in the VMs
- Proof of Concept
 - limited to TCP/IPv4 and UNIX domain sockets

https://github.com/containers/libkrunfw
© 2021, Red Hat, Inc.
libkrun goals

- Simple API to easily allow other applications to run processes in a VM-based isolated environment
- Small footprint
 - RAM
 - CPU
 - Boot time
- Compatible with a reasonable amount of use cases
 - Stronger isolation for containers
 - Fully encrypted containers (using SEV/TDX)
 - Self-isolating microservices
 - Running Lightweight VMs based on OCI images on Linux and macOS
 https://twitter.com/slpnx/status/1348406770990002178?s=20
libkrun demo
Developing with AF_VSOCK
Languages providing AF_VSOCK bindings

- C
 - glibc >= 2.18 [2013-08-10]

- Python
 - python >= 3.7 alpha 1 [2017-09-19]

- Golang
 - https://github.com/mdlayher/vsock

- Rust
 - libc crate >= 0.2.59 [2019-07-08]
 - struct sockaddr_vm
 - VMADDR_* macros
 - nix crate >= 0.15.0 [2019-08-10]
 - VSOCK supported in the socket API (nix::sys::socket)
Client running in the guest
import socket

s = socket.socket(socket.AF_VSOCK, socket.SOCK_STREAM)
s.connect((socket.VMADDR_CID_HOST, 1234))
s.send(b'Hello, world')

Server running in the host
import socket

s = socket.socket(socket.AF_VSOCK, socket.SOCK_STREAM)
s.bind((socket.VMADDR_CID_ANY, 1234))
s.listen()
client, addr = s.accept()
data = client.recv(1024)
print("CID: {} port:{} data: {}".format(addr[0], addr[1], data))
Local communication with vsock-loopback

- Local communication without VMs
 - Tests
 - Debug

- vsock-loopback
 - New transport available from Linux v5.6
 - modprobe vsock-loopback

- CID(s)
 - VMADDR_CID_LOCAL (1)
 - Well-known CID for loopback
Useful tools with AF_VSOCK support

- **wireshark** >= 2.40 [2017-07-19]
- **iproute2** >= 4.15 [2018-01-28]
 - ss
- **tcpdump** >= 4.99 [2020-12-30]
 - libpcap >= 1.9 [2018-06-24]
 - Fedora backported vsock patches on tcpdump 4.9.3
- **nmap** >= 7.80 [2019-08-10]
 - ncat

- **nbd**
 - nbdkit >= 1.15.5 [2019-10-19]
 - libnbd >= 1.1.6 [2019-10-19]
- **socat** >= 1.7.4 [2021-01-04]
- **iperf-vsock**
 - iperf3 fork
 - https://github.com/stefano-garzarella/iperf-vsock
Concatenate and redirect sockets

- **Ncat** - https://nmap.org/ncat/
 - new parameter
 - `--vsock`
 - Examples
 - `ncat --vsock -l 4321`
 - `ncat --vsock 1 4321`

- **socat** - http://www.dest-unreach.org/socat/
 - New address types
 - VSOCK-LISTEN
 - VSOCK-CONNECT
 - Examples
 - `socat - VSOCK-LISTEN:4321`
 - `socat - VSOCK-CONNECT:1:4321`
Dump and analyze AF_VSOCK traffic

- **Prerequisites**
 - vsockmon kernel module available (CONFIG_VSOCKMON=m)
 - Create vsockmon virtual device to monitor AF_VSOCK sockets
 - `ip link add type vsockmon`
 - `ip link set vsockmon0 up`

- **tcpdump**
 - `tcpdump -i vsockmon0`

- **Wireshark**
 - `wireshark -k -i vsockmon0`
Performance evaluation

- iperf-vsock: iperf3 fork with AF_VSOCK support
 - https://github.com/stefano-garzarella/iperf-vsock
 - new parameter
 - --vsock
 - Examples
 - host$ iperf3 --vsock -s
 - guest$ iperf3 --vsock -c 2
 - Firecracker's hybrid VSOCK over AF_UNIX
 - Host runs iperf server
 - iperf3 --vsock -s -B /tmp/vm.vsock
 - Host runs iperf client
 - iperf3 --vsock -c /tmp/vm.vsock
Next Steps

- **SOCK_SEQPACKET**
 - Sequenced, reliable, two-way connection-based data transmission path for datagrams
 - [PATCH 0/5] virtio/vsock: introduce SOCK_SEQPACKET support
 - https://lore.kernel.org/netdev/20210103195454.1954169-1-arseny.krasnov@kaspersky.com

- **Network namespaces**
 - Useful for partitioning VMs or in a nested environment
 - [PATCH net-next 0/3] vsock: support network namespace
 - https://lore.kernel.org/lkml/20200116172428.311437-1-sgarzare@redhat.com/
Next Steps (2)

- **Multi-queue**
 - Currently one TX / RX queue per vssock device
 - I/O intensive workloads
 - Multiple endpoints communication

- **Shared memory**
 - Vsock communication using shared memory regions
 - Less buffer copies
 - Fast communication
Q&A

Andra Paraschiv <andraprs@amazon.com>

Stefano Garzarella <sgarzare@redhat.com>
Blog: https://stefano-garzarella.github.io/
IRC: sgarzare on qemu irc.oftc.net
Thank you!
References

References (2)

[9] https://katacontainers.io/learn

[10] https://github.com/kata-containers/documentation/blob/master/design/architecture.md

[12] https://github.com/containers/libkrunfw