

Mathematics and development of fast
TLS handshakes

Alexander Krizhanovsky

Tempesta Technologies, Inc.

ak@tempesta-tech.com

mailto:ak@tempesta-tech.com

Web content delivery & protection

2013: WAF development by request of Positive Technologies
“Visionar” from Gartner magic quadrant’15
● Web attacks
● L7 HTTP/HTTPS DDoS attacks

Nginx, HAProxy, etc. - perfect HTTP proxies,
not HTTP filters

Netfilter works in TCP/IP stack (softirq)
=> HTTP(S)/TCP/IP stack

Tempesta FW:
● hybrid of HTTP accelerator & firewall
● embedded into the Linux TCP/IP stack

Tempesta TLS
https://netdevconf.info/0x12/session.html?kernel-tls-handhakes-for-https-ddos-mitigation

Part of Tempesta FW,
an open source
Application Delivery Controller

Open source alternative to
F5 BIG-IP or Fortinet ADC

“TLS CPS/TPS” is a
common specification for
network security appliances
& ADCs

https://netdevconf.info/0x12/session.html?kernel-tls-handhakes-for-https-ddos-mitigation

Linux kernel TLS handshaks

Very fast light-weight Linux kernel implementation
● ...even for session resumption
● there is modern research in the field

Resistant against DDoS on TLS handshakes (asymmetric DDoS)

Privileged address space for sensitive security data
● Varnish: TLS is processed in separate process Hitch

http://varnish-cache.org/docs/trunk/phk/ssl.html

● Resistance against attacks like CloudBleed
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/

http://varnish-cache.org/docs/trunk/phk/ssl.html
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/

Why NIST p256?

ECDSA
● RSA and NIST curves p256, p384, and p521 are the only allowed for

CA certificates
https://cabforum.org/baseline-requirements-documents/

● P256 is the fastest NIST curve
● P521 isn’t recommended by IANA

https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8

● RSA is slow and vulnerable to asymmetric DDoS
https://vincent.bernat.im/en/blog/2011-ssl-dos-mitigation

Curve25519
● Much faster than NIST p256
● In practice for ECDHE only

https://vincent.bernat.im/en/blog/2011-ssl-dos-mitigation

TLS libraries performance issues

Copies, memory
initializations/erasing,
memory comparisons

memcpy(), memset(),
memcmp() and their
constant-time analogs

Many dynamic allocations

Large data structures

Some math is outdated

 12.79% libc-2.24.so _int_malloc
 9.34% nginx(openssl) __ecp_nistz256_mul_montx
 7.40% nginx(openssl) __ecp_nistz256_sqr_montx
 3.54% nginx(openssl) sha256_block_data_order_avx2
 2.87% nginx(openssl) ecp_nistz256_avx2_gather_w7
 2.79% libc-2.24.so _int_free
 2.49% libc-2.24.so malloc_consolidate
 2.30% nginx(openssl) OPENSSL_cleanse
 1.82% libc-2.24.so malloc
 1.57% [kernel.kallsyms] do_syscall_64
 1.45% libc-2.24.so free
 1.32% nginx(openssl) ecp_nistz256_ord_sqr_montx
 1.18% nginx(openssl) ecp_nistz256_point_doublex
 1.12% nginx(openssl) __ecp_nistz256_sub_fromx
 0.93% libc-2.24.so __memmove_avx_unaligned_erms
 0.81% nginx(openssl) __ecp_nistz256_mul_by_2x
 0.75% libc-2.24.so __memset_avx2_unaligned_erms
 0.57% nginx(openssl) aesni_ecb_encrypt
 0.54% nginx(openssl) ecp_nistz256_point_addx
 0.54% nginx(openssl) EVP_MD_CTX_reset
 0.50% [kernel.kallsyms] entry_SYSCALL_64

The source code
https://github.com/tempesta-tech/tempesta/tree/master/tls

Still in-progress: we implement some of the algorithms on our own

Initially the fork of mbed TLS 2.8.0 (https://tls.mbed.org/) - x40 faster!
● very portable and easy to move into the kernel
● cutting edge security
● too many memory allocations (https://github.com/tempesta-tech/tempesta/issues/614)
● big integer abstractions (https://github.com/tempesta-tech/tempesta/issues/1064)
● inefficient algorithms, no architecture-specific implementations, ...

We also take parts from WolfSSL (https://github.com/wolfSSL/wolfssl/)
● very fast, but not portable
● security https://github.com/wolfSSL/wolfssl/issues/3184

https://github.com/tempesta-tech/tempesta/tree/master/tls
https://tls.mbed.org/
https://github.com/tempesta-tech/tempesta/issues/614
https://github.com/tempesta-tech/tempesta/issues/1064
https://github.com/wolfSSL/wolfssl/
https://github.com/wolfSSL/wolfssl/issues/3184

ECDSA & ECDHE mathematics:
Tempesta TLS, OpenSSL, WolfSSL

OpenSSL 1.1.1h
 256 bits ecdsa (nistp256) 36473 sign/s
 256 bits ecdh (nistp256) 16620 op/s

WolfSSL (current master)
 ECDSA 256 sign 43260 ops/sec (+19%)
 ECDHE 256 agree 40878 ops/sec (+146%)

Tempesta TLS (full TLS handshake operation)
 ECDSA sign (nistp256): ops/s=38393
 ECDHE srv (nistp256): ops/s=13418

OpenSSL & WolfSSL don’t include ephemeral keys generation
(one more m * G operation)

Demo!

Tempesta TLS, Nginx-1.14.2/OpenSSL-1.1.1d, Nginx-1.17.8/WolfSSL

TLS 1.2
● full handshakes
● abbreviated handshakes
tls-perf
https://github.com/tempesta-tech/tls-perf

● establish & drop many TLS connections in parallel
● like TLS-THC-DOS, but faster, more flexible, more options

https://github.com/tempesta-tech/tls-perf

Data for proprietary vendors

BIG-IP is only 30-50% faster than Nginx/OpenSSL/DPDK
https://www.youtube.com/watch?v=Plv87h8GtLc

Avi Vantage (VMware) makes ~2000 handshakes/second per 1CPU
https://avinetworks.com/docs/latest/ssl-performance/

https://www.youtube.com/watch?v=Plv87h8GtLc

Why faster?

No memory allocations in run time

No context switches

No copies on socket I/O

Less message queues

Zero-copy handshakes state machine
https://netdevconf.info/0x12/session.html?kernel-tls-handhakes-for-https-ddos-mitigation

State of the art cryptography mathematics

https://netdevconf.info/0x12/session.html?kernel-tls-handhakes-for-https-ddos-mitigation

Elliptic curve cryptography

Secp256r1: y2 = x3 - 3x + b defined over the field GF(p)
p256 = 2256 – 2224 + 2192 + 296 - 1

The group law

● negatives: if P = (x, y),
then -P = (x, -y)

● addition: R = P + Q
● doubling: R = P + P = 2*P

ECDSA: k – secure random, G – known point
k * G is used for the signature

ECDH: d – private key, Q – public key
shared secret: d * Q

Point multiplication

OpenSSL: “Fast prime field elliptic-curve cryptography with 256-bit primes" by Gueron and Krasnov

Q = m * P - the most expensive elliptic curve operation
 for i in bits(m):
 Q ← point_double(Q)
 if mi == 1:
 Q ← point_add(Q, P)

Point multiplications in TLS handshake:
● known point multiplication: precompute the table for doubled G
● perfect forward secrecy ECDHE: generate keys G * d (d – random)
● handshake: 2 known & 1 unknown point multiplications

Point representation and coordinate systems

http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html

“Analysis and optimization of elliptic-curve single-scalar multiplication”, Bernstein & Lange,
2007

Jacobian coordinates (rough estimations)

● conversion overhead: 39*M + 4*S + 3*I (for w(-indow) = 4)

● point addition (mixed) - 8*M + 3*S, doubling - 2*M + 4*S

Affine coordinates (rough estimations)

● point addition - 13*M + 4*S, doubling - 4*M + 5*S

NIST 256 bits, D = 256 / w = 64 Comb rounds (addition & doubling):

 64 * (10*M + 7*S) << 64 * (17*M + 9*S)

http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html

Point addition

http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl

ex. addition in Jacobian coordinates (cost: 11M + 5S)
A = (x1, y1, z1), B = (x2, y2, z2), then C = A + B = (x3, y3, z3) is

 U1 = X1Z2
2

 U2 = X2Z1
2

 S1 = Y1Z2
3

 S2 = Y2Z1
3

 H = U2 - U1
 R = S2 - S1
 z3 = HZ1Z2
 x3 = R2 - H3 – 2U1H2

 y3 = (U1H2 - X3)R - S1H3

http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl

The cost

Modular multiplication (M) is the most expensive basic scalar operation

Modular squaring (S) faster than M, usually 0.8M (Montgomery)
(0.9 for optimized FIPS due to more expensive modular reduction)

Modular inversion (I) is very expensive, about 100M

Modular arithmetics

ex. prime field F(29)
addition: 17 + 20 = 8 since 37 mod 29 = 8
subtraction: 17 − 20 = 26 since −3 mod 29 = 26
multiplication: 17 * 20 = 21 since 340 mod 29 = 21
inversion: 17−1 = 12 since 17 · 12 mod 29 = 1

Montgomery reduction (the most used)
● there is some overhead, but each modular operation is cheaper

FIPS reduction
● Can be faster if small number of modular operations is used
● There are optimization techniques,

e.g.“Low-Latency Elliptic Curve Scalar Multiplication” Bos, 2012
● But still about 65% slower than Montgomery reduction

Montgomery multiplication in P256

“Montgomery Multiplication”, Henry S. Warren, Jr.

Fast 256-bit integer multiplication with modular reduction on P256

a, b < m (m - modulus P256)

Set n = 2256

Transform multipliers to Montgomery domain (overhead):
a’ = an mod m b’ = bn mod m

Fast multiplication with reduction: u = a’b’/n mod m

● compute only 256 bits of (a’b’ + (-m-1a’b’ mod n)m)/n
● if u > m, then u ← u – m (unconditionally, carry as a mask)

Convert to ordinary number: v = un -1 mod m

The math layers

Different multiplication algorithms for fixed and unknown point
● ”Efficient Fixed Base Exponentiation and Scalar Multiplication based on a Multiplicative

Splitting Exponent Recoding”, Robert et al 2019

Point doubling and addition - everyone seems use the same algorithms

Jacobian coordinates: different modular inversion algorithms
● “Fast constant-time gcd computation and modular inversion”, Bernstein et al, 2019

Modular reduction for scalar multiplications:
● Montgomery has overhead vs FIPS speed: if we use less multiplcations it could make

sense to use different reduction method FIPS (seems deadend)
● “Low-Latency Elliptic Curve Scalar Multiplication” Bos, 2012

=> Balance between all the layers

Example of math layers balancing

For w=5 we need 52 point additions for an unknown point multiplication

Jacobian coordinates addition takes 11M + 5S

Affine-Jacobian coordinates addition takes 8M + 3S

● about 4.4M cheaper if S = 0.8M
● requires 2 coordinates normalizations for Comba precomputation
● coordinates normalization: 2w - 1 * (6M + 1S) + 1I

Almost the same for S = 0.9M and fast inversion I < 100M

Montgomery arithmetics (S = 0.8M):

● ECDHE +28% and ECDSA +6% performance

Side channel attacks (SCA) resistance

Timing attacks, simple power analysis, differential power analysis etc.

Protections against SCAs:
● Constant time algorithms
● Dummy operations
● Point randomization
● e.g. modular inversion 741 vs 266 iterations

RDRAND allows to write faster non-constant time algorithms
● SRBDS mitigation costs about 97% performance

https://software.intel.com/security-software-guidance/insights/processors-affected-special-register-buffe
r-data-sampling?fbclid=IwAR1ifj3ZuAtNOabKkj3vFItBLSvOnMqlxH2I-QeN5KB-aji54J1BCJa9lLk
https://www.phoronix.com/scan.php?page=news_item&px=RdRand-3-Percent&fbclid=IwAR2vmmR_Lir
oekUuw7KMRaHB7KThpqz0tIr1fX2GCW3HAvwt5Kb1p9xpLKo

https://software.intel.com/security-software-guidance/insights/processors-affected-special-register-buffer-data-sampling?fbclid=IwAR1ifj3ZuAtNOabKkj3vFItBLSvOnMqlxH2I-QeN5KB-aji54J1BCJa9lLk
https://software.intel.com/security-software-guidance/insights/processors-affected-special-register-buffer-data-sampling?fbclid=IwAR1ifj3ZuAtNOabKkj3vFItBLSvOnMqlxH2I-QeN5KB-aji54J1BCJa9lLk
https://www.phoronix.com/scan.php?page=news_item&px=RdRand-3-Percent&fbclid=IwAR2vmmR_LiroekUuw7KMRaHB7KThpqz0tIr1fX2GCW3HAvwt5Kb1p9xpLKo
https://www.phoronix.com/scan.php?page=news_item&px=RdRand-3-Percent&fbclid=IwAR2vmmR_LiroekUuw7KMRaHB7KThpqz0tIr1fX2GCW3HAvwt5Kb1p9xpLKo

Memory usage & SCA

ex. ECDSA precomputed table for fixed point multiplication
● mbed TLS: ~8KB dynamically precomputed table, point

randomization, constant-time algorithm, full table scan
● OpenSSL: ~150KB static table, full scan
● WolfSSL: ~150KB, direct index access (fixed in the new version)

https://github.com/wolfSSL/wolfssl/issues/3184

=> 150KB is far larger than L1d cache size, so many cache misses:

https://github.com/wolfSSL/wolfssl/issues/3184

Big Integers (aka MPIs)

“BigNum Math: Implementing Cryptographic Multiple Precision Arithmetic”, by Tom St Denis

All the libraries use them (not in hot paths), mbed TLS overuses them

linux/lib/mpi/, linux/include/linux/mpi.h
 typedef unsigned long int mpi_limb_t;
 struct gcry_mpi {
 int alloced; /* array size (# of allocated limbs) */
 int nlimbs; /* number of valid limbs */
 int nbits; /* the real number of valid bits (info only) */
 int sign; /* indicates a negative number */
 unsigned flags;
 mpi_limb_t *d; /* array with the limbs */
 };

Need to manage variable-size integers
=> size-specific assembly implemetations

Easy assembly
 // a := a + b
 // x[0] is the less significant limb,
 // x[1] is the most significant limb.
 void s_mp_add(unsigned long *a, unsigned long *b) {
 unsigned long carry;
 a[0] += b[0];
 carry = (a[0] < b[0]);
 a[1] += b[1] + carry;
 }

 // Pointer to a is in %RDI, pointer to b is in %RSI
 movq (%rdi), %r8
 movq 8(%rdi), %r9

 addq (%rsi), %r8 // add with carry
 addc 8(%rsi), %r9 // use the carry in the next addition

 movq (%r8), (%rdi)
 movq (%r9), 8(%rdi)

Open questions and further research

Ice Lake CPUs have negligeable downclocking on AVX-512
https://travisdowns.github.io/blog/2020/08/19/icl-avx512-freq.html

Parallel Montgomery computations
J.W.Bos, "Montgomery Arithmetic from a Software Perspective", 2017

● SIMD multiplications & squarings of two and more products
● Interleaved Montgomery multiplications

Better methods for point multiplications

Going to the Linux kernel upstream

Details and the discussion
● https://netdevconf.info/0x14/session.html?talk-performance-study-of-kernel-TLS-handshakes
● https://github.com/tempesta-tech/tempesta/issues/1433

Server-side only

The full TLS handshake is in softirq (just like TCP)

Fallback to a user-space TLS library on ClientHello

Batches of handshakes in 1 FPU context

https://github.com/tempesta-tech/tempesta/issues/1433

TODO

More cryptography mathematics performance optimizations
https://github.com/tempesta-tech/tempesta/issues/1064
https://github.com/tempesta-tech/tempesta/issues/1335

TLS 1.3
https://github.com/tempesta-tech/tempesta/issues/1031

Moving to the kernel asymmetric keys API
https://github.com/tempesta-tech/tempesta/issues/1332

The Linux kernel /crypto API performance issues

● SHA-256 (crucial for TLS handshake) 30-100% slower than OpenSSL
https://github.com/tempesta-tech/tempesta/issues/1483

● Extra copying and memory allocations in kTLS
https://github.com/tempesta-tech/tempesta/issues/1064

https://github.com/tempesta-tech/tempesta/issues/1064
https://github.com/tempesta-tech/tempesta/issues/1031
https://github.com/tempesta-tech/tempesta/issues/1332
https://github.com/tempesta-tech/tempesta/issues/1483

Netdev papers about Tempesta TLS

“Kernel HTTP/TCP/IP stack for HTTP DDoS mitigation”, Netdev 2.1,
https://netdevconf.info/2.1/session.html?krizhanovsky

“Kernel TLS handshakes for HTTPS DDoS mitigation”, Netdev 0x12,
https://netdevconf.info/0x12/session.html?kernel-tls-handhakes-for-https-ddos-mitigation

“Performance study of kernel TLS handshakes”, Netdev 014,
https://netdevconf.info/0x14/session.html?talk-performance-study-of-kernel-TLS-handsh
akes

https://netdevconf.info/2.1/session.html?krizhanovsky
https://netdevconf.info/0x12/session.html?kernel-tls-handhakes-for-https-ddos-mitigation
https://netdevconf.info/0x14/session.html?talk-performance-study-of-kernel-TLS-handshakes
https://netdevconf.info/0x14/session.html?talk-performance-study-of-kernel-TLS-handshakes

Thanks!

Contact us if you’re interested in fast Linux kernel TLS!

https://github.com/tempesta-tech/tempesta

ak@tempesta-tech.com

https://github.com/tempesta-tech/tempesta
mailto:ak@tempesta-tech.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

