
© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022© 2022 Valeo | Creative Commons BY-SA 4.0

Automotive Ethernet
PHY

Bring-up
Jean-Louis Thekekara

jean-louis.thekekara@valeo.com

Fosdem 2022

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022 2

Self-introduction

●Embedded Linux Engineer since 2010.

●Started my career in Paris: OpenWide, Parrot Drones.

●Joined Valeo Telematik & Akustik (Frankfurt) in 2018 to develop TCUs (Telematics Control
Units) for cars.

●Not an automotive expert, but just want to share my humble experience.

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022 3

Goals and expectations

● Know the basics about Ethernet PHY

○ In this case, automotive ethernet PHYs, but the work should be roughly the same for
non-automotive ones.

● Give an overview of what tasks are expected when bringing-up an ethernet PHY in
embedded Linux.

● Share some common bring-up issues and debug tips.

● Note: this presentation is based on a internal presentation in the Valeo group (2021)

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022 4

Agenda

● Context

● Architecture and glossary

● PHY configuration checklist

● SW implementation

● Debug tips

● Questions

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022 5

Context

● Why do have Ethernet in our vehicles?

○ need for always more bandwidth (SW update, ADAS, Infotainment, etc.)

○ need for standardization (most of competing solutions = proprietary solutions)

● Why do we use Automotive Ethernet?

○ need to pass EMC tests

○ has a lower cost & weight compared to traditional Cat5/6 ethernet cables

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

Architecture & Glossary

Differential
transmit/receive

Application processor

MAC

MDIO (Control)

xMII
(Data) Ethernet

phy

MATENet
(Automotive
Connector)

2

28~12

●PHY = transceiver = signal
translation between xMII and a
single twisted pair of cables

●MAC = Ethernet controller usually
integrated into an application
processor

●MDIO = low speed control bus

●xMII = high speed data bus. Ex:
SGMII, RGMII

6

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

PHY Configuration Checklist

● What is the PHY address?

○ The PHY addr is used by the MAC to find the PHY on the MDIO bus and proceeds to its
initialization.

7

Clause 22 frame format (Source: May 4, 2000 IEEE P802.3ae MDC/MDIO Slide – V1.0)

○ The IEEE 802.3 standard sets up to 32 PHYs per MDIO bus -> possible values: 0x00 ->
0x1F

○ The value is ‘bootstrapped’ at PHY power-up. -> Check the datasheet + board’s
schematic

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

PHY Configuration Checklist

● What is the PHY mode (master/slave)?

○ Usually, we want our TCU to be in slave mode (The other end point in the vehicle is a
master). Thus in our test setup, the media converter will be set a master.

○ The mode is always bootstrapped

Differential
transmit/receiveEthernet

phy

MATENet
(Automotive
Connector)

2 Media
converter

2 Differential
transmit/receive

Slave Master

RJ45

Test PC

8

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

PHY Configuration Checklist

● Is the rest of the bootstrapped configuration consistent?

○ 100 vs 1000 Mbit/s

○ SGMII vs RGMII

○ TX/RX RGMII clock delay enabled vs disabled

○ Etc.

● xMII voltage level is also sometimes SW-configurable (1.8V, 2.5V, 3.3V)

Most bootstrapped parameters can be superseded in SW during the PHY init
with MDIO writes. However it is recommended to use the bootstrap method

9

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

PHY Configuration Checklist

● What is the correct init sequence for the PHY?

○ The PHY usually requires a (proprietary/under NDA) initialization sequence which
consists of an ordered list of register write sequences (on the MDIO bus):

○ Pseudo-code: write(DEVAD*, Register, Value)

 *DEVAD = Device address. This is not the PHY address. On modern PHYs, DEVAD adds one level of indirection to
access internal devices of the PHY.

phy_write_mmd(phydev, 0x01, 0x0123, 0x8001);
phy_write_mmd(phydev, 0x1f, 0x01f, 0x0101);
phy_write_mmd(phydev, 0x1f, 0xabcd, 0x4321);
phy_write_mmd(phydev, 0x1f, 0xdead, 0xbeef);
...

○ This init sequence must be carefully selected and must match the exact revision of the
PHY chipset. Triple-check this sequence with the chip vendor.

10

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

SW implementation

● There are two places for controlling and initializing the PHY

○ The (secondary) bootloader. Ex: U-boot or little kernel

○ The Linux kernel.

● Unless we have in the bootloader some specific use cases like network boot, we can
implement only in the kernel.

● Reminder: the MDIO bus is controlled by the MAC driver, provided by the Vendor BSP

○ The write/read commands on the MDIO bus should work out of the box

○ Clause 22 / clause 45 / indirect read topic: see references at the end of this
presentation.

11

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

SW implementation

● Remaining work

○ Step 1: adapt the board hardware description (= device tree)

○ Step 2: adapt or write the PHY driver (used by the MAC driver)

○ Step 3: check that the PHY is detected and that the correct PHY driver is loaded

○ Step 4: check that the LINK is up

12

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

SW implementation
Step 1: adapt the device tree

● arch/arm64/boot/dts/vendor/yourboard.dts :

&fec1 {
 ...
 status = "okay";
 phy-mode = "rgmii-id";
 phy-handle = <ðphy1>;
 ...

/* ti dp83tg720 */
ethphy1: ethernet-phy@10 {

 compatible = "ethernet-phy-ieee802.3-c22";
 reg = <10>; /* physical addr of TI PHY CS 1.1 is 10 */
 status = "okay";

};

};

●MAC (= ethernet card = eth0
device) is activated

●Phy-mode is correct (rgmii vs
sgmii)

●Phy-addr is correct

●For more details, check:
○ Documentation/devicetree/bindings

/net/ethernet.txt

○ Documentation/devicetree/bindings
/net/phy.txt

○ Documentation/devicetree/bindings
/net/<your-mac-driver>.txt

13

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

SW implementation
Step 2: adapt or write the PHY driver

● The PHY drivers are located in:

○ drivers/net/phy

● It is recommended to open the most similar existing phy driver and modify it.

● To locate the correct drivers, one can grep the first bits of the PHY ID.

○ Example: TI DP83TG720 (0x2000A284)

$ grep 0x2000a drivers/net/phy/*
drivers/net/phy/dp83848.c:#define TLK10X_PHY_ID 0x2000a210
drivers/net/phy/dp83848.c:#define TI_DP83822_PHY_ID 0x2000a240
drivers/net/phy/dp83867.c:#define DP83867_PHY_ID 0x2000a231
drivers/net/phy/dp83tc811.c:#define DP83TC811_PHY_ID 0x2000a253

○ If unsuccessful, just modify a driver from the same brand (ex: marvell.c)

14

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

SW implementation
Step 2: adapt or write the PHY driver

● Complete the two structures which allows the mapping of the PHY IDs found on the bus
and the primitives provided by the driver:

#define DP83TG720_ES2_PHY_ID 0x2000a281
#define DP83TG720_PHY_ID_MASK 0xffffffff

static struct phy_driver dp83txxxx_drivers[] = {
 ...
 {

.phy_id = DP83TG720_ES2_PHY_ID,

.phy_id_mask = DP83TG720_PHY_ID_MASK,

.name = "TI DP83TG720 ES 2.0",

...

.config_init = dp83tg720_config_init_es2,

.soft_reset = dp83811_phy_reset,
 },
};
module_phy_driver(dp83txxxx_drivers);

static struct mdio_device_id __maybe_unused dp83txxxx_tbl[] = {
 ...
 { DP83TG720_ES2_PHY_ID, DP83TG720_PHY_ID_MASK},
 { },
};
MODULE_DEVICE_TABLE(mdio, dp83txxxx_tbl);

●Some primitives need always to be
rewritten. Ex: config_init (where
you can put the PHY init sequence)

● Some can be reused because very
generic. ex: soft_reset

15

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

SW implementation
Step 2: adapt or write the PHY driver

● config_init: called after reset. The init sequence should be placed here + eventually
master/slave mode enforcement and other custom parameters.

static const struct dp83tc811_init_data dp83tg720_slave_init_es2[] = {
 {0x0123, 0x0101},
 {0xabcd, 0x0001},
 {0xdead, 0xbeef},
 {0x0101, 0x0101},
 ...
}
...
static int dp83tg720_config_init_es2(struct phy_device *phydev)
{
...
 for (i = 0; i < size; i++)

phy_write_mmd(phydev, DP83811_DEVADDR,
 dp83tg720_slave_init_es2[i].reg,
 dp83tg720_slave_init_es2[i].val);

}

16

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

SW implementation
Step 2: adapt or write the PHY driver

●config_aneg: as per our own uses cases, we are not using auto-negotiation. It can be
populated with a single line like:

phydev->speed = SPEED_1000; /* We don’t support autoneg. Fixed speed to 1Gbit/s/*

17

● soft_reset, suspend, resume, etc : unless the PHY chip vendor has explicitly
define a routine, it is safe to not implement it for a first bring-up. The PHY driver framework
will automatically use the generic implementation (genphy_*).

● Check include/linux/phy.h for a comprehensive description of all the primitives.

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

SW implementation
Step 3: check that the PHY is detected

● Successful, the PHY driver we just defined is used

[6.438847] TI DP83TG720 CS 1.1 5b040000.ethernet-1:0a: attached PHY driver [TI
DP83TG720 CS 1.1] (mii_bus:phy_addr=5b040000.ethernet-1:0a, irq=POLL)

18

● HW failure or bad PHY address:

[3.256382] mdio_bus 5b040000.ethernet-1: MDIO device at address 10 is missing.
...
[10.288650] fec 5b040000.ethernet eth0: Unable to connect to phy

● PHY has been found on the MDIO bus, but the PHY driver is not loaded (for instance,
because of an incorrect PHY ID). Thus a generic driver is used.

[10.290456] Generic PHY 5b040000.ethernet-1:0a: attached PHY driver [Generic PHY]
(mii_bus:phy_addr=5b040000.ethernet-1:0a, irq=POLL)

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

SW implementation
Step 4: check that the LINK is up

● The media converter dedicated LINK LED should be ON.

● Common sources of LINK issues

○ The PHY Init sequence is incorrect

○ The other endpoint (media converter or another board) is not master when the PHY is
slave or vice versa

○ RGMII Rx/Tx delay issue: a delay can be configured internally in the PHY or in the
MAC, but usually not in both.

○ HW issue on the Physical medium part (broken CMC, broken differential line, etc.)

19

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

SW implementation
U-Boot tweaks

● iMX8 and Gigabit PHY: make sure to #define FEC_QUIRK_ENET_MAC to get Gigabit
support

○ e5da517 (Oleksandr Suvorov) ARM: imx8: Add missing FEC ENET quirk
for i.MX8/i.MX8X (in mainline since 2021)

●PHY that needs a custom reset procedure (ex: some Marvell)

○ 73b2fbb (Jean-Louis Thekekara) drivers/net/phy: allow custom
phy_reset() (upstreaming in progress)

●C45 support in iMX8:

○ Status: at first NXP didn’t want to support it officially, but finally added the support at
Linux level only. I backported it at U-Boot level but not upstreamed yet.

20

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

SW implementation
Linux tweaks

●Nothing special. The C45 support in the FEC (iMX8) driver landed in the kernel since 2019.

21

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

Debug tips

● Use phytool. Example of PHY ID check in the IEEE802.3 registers 2 and 3:

root@imx8qxpmyboard:~# phytool read eth0/10/2
0x2000
root@imx8qxpmyboard:~# phytool read eth0/10/3
0xa284

● phytool uses the MAC driver and is functional only once the PHY is correctly detected
(no “Unable to connect to phy” error).

=> Thus it can be used for LINK establishment debug, not for PHY detection debug.

=> alternative: use U-boot environment (mdio/mii test commands), but that requires a
minimum of BSP integration as sometimes mdio/mii don’t work out of the box.

22

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

Debug tips

● Check that a PHY chip is “alive”

○ When in RGMII mode, check the Rx CLK is producing a 25Mhz (when in 100Mbit/s) or
a 125Mhz signal (when in 1GBit/s)

● Check clock symmetry

○ Rx CLK produced by the PHY should be the same as the Tx CLK produced by the
MAC (25/25Mhz or 125/125Mhz)

● Check that the MDIO bus is correctly managed by the MAC

○ observe the first frames on a scope

23

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

Debug tips

● Use the PHY evaluation kit from the chip vendor instead of a COTS media converter

○ Rational: some early samples (engineering samples) of PHY are not always fully
compliant with the OpenAlliance 100/1000BaseT1 standards and thus are not
interoperable with other PHYs

24

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

References

● MDIO clause 22 & 45 introduction:
○ https://www.ieee802.org/3/efm/public/sep01/turner_1_0901.pdf

○ https://www.totalphase.com/support/articles/200349206-MDIO-Background

○ https://www.ieee802.org/3/efm/public/nov02/oam/pannell_oam_1_1102.pdf

● Ethernet PHY introduction (kernel dev oriented):
○ Documentation/networking/phy.txt

25

© 2022 Valeo | Creative Commons BY-SA 4.0 Fosdem 2022

