Open source data on Ceramic
Why the future of the web is self-certifying
Regulation to force data interoperability

Company A

API 1

Company B

Integration
Regulation to force data interoperability

Company A

API 1

Company B

Integration

API 2

Re-integration
Self-Certifying protocols provides an alternative

1. Cryptographic user keys
2. Content-addressed data

Image credit: Web3 is Self-Certifying – Jay Graber
Self-Certifying protocols provide an alternative

1. Cryptographic user keys
2. Content-addressed data
Ceramic is a network of self-certifying data objects

Verifiable history: each object is represented as a stream of events, where each event is signed and includes a pointer to the previous event.

Location agnostic: each object is accessed globally by StreamID, and anyone can make them available on their Ceramic node.

Open data: an object in Ceramic can link to any other object creating a global information graph.

Shared network effects: objects are owned and controlled by users, and thus doesn’t create app silos.
Self-Certifying Objects in Ceramic

1. Stream of signed updates
 - Linked events
 - Any IPLD dag

2. Immutable StreamID
 - Created from hash of genesis event
 - Global namespace

3. Signed by DID
 - Cross-network, key-agnostic, future-proof
 - Key rotation & revocation built-in

4. Events are processed by local node
 - Validate signature and StreamType
 - Update & track state
 - Share with network via libp2p

5. Updates anchored onto a blockchain
 - Provides proof-of-existence
 - Enables secure key rotation

6. Configurable state transition logic
 - StreamTypes define custom logic for how to process events
Identity on Ceramic

DIDs: a w3c standard for Decentralized Identifiers

PKH DID: Makes any account on any blockchain into a Decentralized Identifier

3ID DID: Ceramic native identities that aggregate accounts across different blockchains

NFT DID: all NFTs can be used to facilitate write access to data objects, or be used as identities

Other DID methods: Ceramic can easily be extended to support various types of DIDs
How do we use this to build apps?
DataModels – templates for user data

https://github.com/ceramicstudio/datamodels/
Human centric data using Self.ID

Data Model #1

<table>
<thead>
<tr>
<th>DID</th>
<th>kjz123...</th>
<th>kjz456...</th>
<th>kjz789...</th>
</tr>
</thead>
<tbody>
<tr>
<td>did:pkh:eip155:1:0xab12...</td>
<td>Alice</td>
<td>{ key1: “nft”, key2: “wizard” }</td>
<td>Y2IwaGVydGV4dGZld8Ko...</td>
</tr>
<tr>
<td>did:3:kjzv4r3ujm6...</td>
<td>Bob</td>
<td>{ key1: “foo”, key2: “bar” }</td>
<td>ZmV3cWZhc2RmZXdmE5...</td>
</tr>
<tr>
<td>did:nft:eip155:1:0xcd34...</td>
<td>Carol</td>
<td>{ key1: “defi”, key2: “ape” }</td>
<td>w7ZvcDg0ZzM5N2hzcw43...</td>
</tr>
</tbody>
</table>

Data Model #2

Data Model #3
Human centric data using Self.ID

Data Model #1

<table>
<thead>
<tr>
<th>DID</th>
<th>kjz123...</th>
<th>kjz456...</th>
<th>kjz789...</th>
</tr>
</thead>
<tbody>
<tr>
<td>did:pkh:eip155:1:0xab12...</td>
<td>Alice</td>
<td>{ key1: “nft”, key2: “wizard” }</td>
<td>Y2lwaGVydGV4dGZld8Ko...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>did:3:kjzv4r3ujm6...</th>
<th>Bob</th>
<th>{ key1: “foo”, key2: “bar” }</th>
<th>ZmV3cWZhc2RmZXdmE5...</th>
</tr>
</thead>
</table>

| did:key:z6Mkp... | Carol | { key1: “defi”, key2: “ape” } | w7ZvcDg0ZzM5N2hzcw43... |

Data Model #2

Data Model #3
Human centric data using Self.ID

<table>
<thead>
<tr>
<th>DID</th>
<th>Name</th>
<th>Description</th>
<th>Data schema</th>
</tr>
</thead>
<tbody>
<tr>
<td>kjz123...</td>
<td>Alice</td>
<td>{ key1: "nft", key2: "wizard" }</td>
<td>Y2lwaGVydGV4dDZld8Ko...</td>
</tr>
<tr>
<td>did:pkh:eip155:1:0xab12...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did:3:kjzv4r3ujm6...</td>
<td>Bob</td>
<td>{ key1: "foo", key2: "bar" }</td>
<td>ZmV3cWZhC2RmZXdmE5...</td>
</tr>
<tr>
<td>did:key:z6Mkp...</td>
<td>Carol</td>
<td>{ key1: "defi", key2: "ape" }</td>
<td>w7ZvoDg0ZzM5N2hzow43...</td>
</tr>
</tbody>
</table>
Human data commons
New Docsite: A new documentation site for developers to learn about Ceramic!

Go-IPFS: Support for DagJOSE (IETF standard for signing & encryption) released in IPFS 0.11

Object Capabilities: Secure session keys for dapps, using Sign-in with Ethereum + CACAO

TipSync: Using the libp2p DHT to query streams in Ceramic. Will enable greater scalability and resilience of the network

Glaze CLI: A comprehensive CLI for interacting with Ceramic and DataModels
Research topics

Stream privacy: Easy to encrypt content, hard to encrypt metadata while maintaining public verifiability

CRDTs: In a multiple writer scenario conflicts in the even log will occur, CRDTs in combination with IPLD can solve this

Recursive ZKPs: By proving each state transition of a stream with a recursive ZKP we can verify the integrity of the entire event log with just one proof (excluding key rotations)

Validator network: Users should be able to pay validators to keep their data available in the network
Introduction to the Ceramic Protocol

Joel Thorstensson, @joelthorst

Documentation: https://developers.ceramic.network

Self.ID: https://self.id

Chat with us: https://chat.ceramic.network