FAST ROBUST ARITHMETICS FOR GEOMETRIC ALGORITHMS

T. Bartels

Technical University of Berlin, Germany

FOSDEM, 2022
Geometric Predicates.

- Geometric predicates are functions that accept geometries and return discrete results.
- Here: Functions that take a fixed number of points and answer an elementary geometric question.
- Geometric predicates are used as subroutines of various geometric constructions and spatial predicates.
Examples of Geometric Predicates (1).

- 2D orientation: For $p, q, r \in \mathbb{R}^2$, the position of r w.r.t. the oriented line \overrightarrow{pq} is

\[
\begin{vmatrix}
 p_x - r_x & p_y - r_y \\
 q_x - r_x & q_y - r_y \\
\end{vmatrix}
\begin{cases}
 > 0 & \text{left.} \\
 = 0 & \text{on.} \\
 < 0 & \text{right.}
\end{cases}
\]

(determinant of a 2×2-matrix, degree 2 polynomial)
Examples of Geometric Predicates (2).

- **2D incircle**: For \(p, q, r, s \in \mathbb{R}^2 \), the position of \(s \) w.r.t. the ccw-oriented circle through \(p, q, r \) is

\[
\begin{vmatrix}
 p_x - s_x & p_y - s_y & (p_x - s_x)^2 + (p_y - s_y)^2 \\
 q_x - s_x & q_y - s_y & (q_x - s_x)^2 + (q_y - s_y)^2 \\
 r_x - s_x & r_y - s_y & (r_x - s_x)^2 + (r_y - s_y)^2
\end{vmatrix}
\begin{cases}
 > 0 & \text{inside.} \\
 = 0 & \text{on the boundary.} \\
 < 0 & \text{outside.}
\end{cases}
\]

(determinant of a \(3 \times 3 \)-matrix, degree 4 polynomial)

- **3D orientation and insphere**: determinants of \(3 \times 3 \)-matrix, degree 3 polynomial and \(4 \times 4 \)-matrix, degree 5 polynomial respectively.
Applications of Geometric Predicates in Algorithms.

- **2D orientation**: spatial predicates, such as point-within-polygon, construction of convex hulls or triangulations.

- **2D incircle**: verifying the Delaunay property in Triangulated irregular networks (TIN).
Limitations of Computer Arithmetic.

- Floating-point numbers can not represent all real values, e.g. the value of `double a = 0.1` is closer to `0.10000000000000006.`
- Floating-point operations generally incurs round-off errors, i.e.
 \[x + y - \varepsilon (x \oplus y) \leq x \oplus y \leq x + y + \varepsilon (x \oplus y) \]
 with machine-epsilon \(\varepsilon \) and floating-point addition \(\oplus \).
- Floating-point and integer operations can overflow.
- Signs of determinants or polynomials can be computed incorrectly.
Limitations of Computer Arithmetic: Example.

- Example: Consider \(p := (-0.01, -0.59) \), \(q := (0.01, 0.57) \),
 \(r := (0.15, 8.69) \) and \(s := (0.07, 4.05) \).
- They all lie on the line \(f(x) = 58x - 0.01 \) but their nearest approximations in double precision are not collinear.
- A naive implementation of the 2D orientation predicate in double precision yields:
 \[
 p_{O2D}(p, q, s) = 0 \\
 p_{O2D}(p, r, s) = 0 \\
 p_{O2D}(p, q, r) \neq 0.
 \]
- These results are incorrect and self-contradictory.
Visualisation for 2D orientation results with a naive double precision implementation for \(p := (19, 19) \), \(q := (16, 16) \) and \(r \) in a very small neighbourhood of \((3.8, 3.8)\).
Robustness Issues.

- Typically, geometric algorithms are formulated and analyzed for real numbers with exact computations (real RAM).
- Incorrect predicate results can cause inconsistencies in the execution of algorithms, which can lead to incorrect results, invalid constructions, crashes or infinite loops.
- Examples:
 - Triangulations can be incorrectly connected.
 - Sequences of Delaunay edge flips may never terminate.
 - A point could be found outside of two closed polygons but within their union.
- This may be unacceptable even if correctness for edge cases is not critical.
Possible Solutions.

- Predicates could be evaluated with exact numbers types.
 - Operations on exact number types can be orders of magnitude slower than operations on built-in types.
 - This performance penalty may be prohibitive when predicates are called millions of times.
- Redundant predicate calls could be avoided to rule out inconsistencies.
 - Deciding whether a predicate call is redundant may be computationally hard.
- Inputs could be perturbed to eliminate degeneracies near-collinear points.
- The solution in this implementation uses floating-point filters:
 - Non-degenerate inputs are processed quickly and correctly.
 - Degenerate inputs are processed using exact arithmetic.
Floating-Point Filters.

- A floating-point filter is a function that returns either the correct predicate result if it can decide the problem returns that it is uncertain.
- In practice, very few predicate calls are so degenerate that they can not be decided by a filter.
- One or more filters can be used in sequence. If all filters fail, an exact stage is required.
- If the filters are fast and most predicate calls are easily decidable, we obtain robust predicates without a severe performance penalty on average.
- Existing implementations include [Shewchuk, 1997] (filters and exact stages for 2D / 3D orientation, incircle and insphere predicates by J. R. Shewchuk) and FPG (a code generator for floating-point filters presented in [Meyer and Pion, 2008]).
Filter for 2D orientation: If, using native floating-point operations, the absolute value of

\[(p_x - r_x)(q_y - r_y) - (p_y - r_y)(q_x - r_x)\]

is greater than or equal to

\[(3\varepsilon + 16\varepsilon^2)(||p_x - r_x||q_y - r_y|| + ||p_y - r_y||q_x - r_x||),\]

then its sign is guaranteed to be correct. otherwise, we can go to higher precision.

Otherwise, the filter fails and we can try again with a more precise filter or exact computation.

Based on forward error analysis (proof in [Shewchuk, 1997]) that can be tedious to implement by hand.
Our implementation: Overview.

- Implemented as a project for Google Summer of Code 2020 (published at github.com/BoostGSoC20/geometry) with Boost.Geometry.
- Project was mentored by Vissarion Fisikopoulos.
- Generates filters and exact stages at compile-time.
- Header-only implementation, no special build-dependencies or steps required.
- Generates multi-stage predicates that can be extended with custom filters.
Our Implementation: Expressions.

- Arbitrary polynomial expressions can be specified in C++-syntax at compile-time.
- Polynomials are represented in the type system using expression templates.
- Notation for variables in expression is inspired by std::placeholders.

```cpp
// example
constexpr auto orientation2d =
  (_3 - _1) * (_6 - _2) - (_5 - _1) * (_4 - _2);
```
Our Implementation: Floating-point filters.

- Filters are based on compile-time forward error analysis, similar to stage A in [Shewchuk, 1997].
- The expressions and constants for error bounds are computed at compile-time using template metaprogramming.
- Any floating-point type with correct rounding, such as float or double, is supported.

```cpp
using filter = forward_error_semi_static <orientation2d, double>;
```
Our Implementation: Exact stage and extensibility.

- Exact stages are evaluated using floating-point expansion arithmetic, as described as stage D in [Shewchuk, 1997].
- The basic idea of floating-point expansions is storing numbers in multiple components to extend precision.
- E.g. double-double arithmetic can be viewed as a form of expansion-arithmetic with two components.
- The required memory is known at compile-time (no heap allocation necessary).
- Exact stages and custom filters can be added to our implementation using exact and interval-number types such as those found in CGAL.
constexpr auto orientation2d =
 (_3 - _1) * (_6 - _2)
 - (_5 - _1) * (_4 - _2);

using filter = forward_error_semi_static
 <orientation2d, double>;

using exact_stage =
 stage_d<orientation2d, double>;

staged_predicate<filter, exact_stage> p;

p.apply(px, py, qx, qy, rx, ry);
Performance in spatial predicates.

- Comparison of timings in ms to determine whether 20,000 generated points are within a polygon of 22,907 points representing Russia.

- The non-robust version produces multiple incorrect results.
Performance in Delaunay Triangulation.

- Data sets: uniformly random points, grid points and GIS data, described in [Špelič et al., 2008].

The speed (in ms) of our predicates was compared to the speed of naive predicates and robust predicates of Shewchuk and CGAL.
Conclusion.

- Fast, robust predicates can make algorithms and spatial predicates robust at acceptable runtime cost.
- Our new implementation of robust predicates can be used for arbitrary, polynomial predicate expressions.
- No code-generation tools/steps required.
- The performance of our implementation of robust predicates is competitive when compared to established solutions.
References.

