LVGL on Oniro

Philippe.Coval +
Gábor.Kiss-Vámosi
#FOSDEM2022
Agenda

- Introduction
- LVGL
- Oniro project
- Integration showcase
Introduction
Introduction

- Philippe Coval is involved into Oniro Project
 - Astrolabe consultant based in France
 - for Huawei Open Source Tech Center
Introduction

- Philippe Coval is involved into Oniro Project
 - Astrolabe consultant based in France
 - for Huawei Open Source Tech Center
- Gábor Kiss-Vámosi is the founder of LVGL
 - CEO of LVGL LLC
 - Developing LVGL and providing Services
What is LVGL?
What is LVGL?

- Light and Versatile Graphics Library
 - Open source (MIT license)
 - Platform independent, and scalable
What is LVGL?

- Light and Versatile Graphics Library
 - Open source (MIT license)
 - Platform independent, and scalable
- First published in 2016 on GitHub
 - Now has 8.3k stars and 200+ contributors
What is LVGL?

- Light and Versatile Graphics Library
 - Open source (MIT license)
 - Platform independent, and scalable
- First published in 2016 on GitHub
 - Now has 8.3k stars and 200+ contributors
- Integrated into many OS and HW solutions:
 - NXP, ESP, NuttX, Zephyr, Rt-Thread, Adafruit, and many more
LVGL UI Demo
LVGL Features
LVGL Features

- Many built in Widgets:
 - buttons, charts, lists, sliders, images, etc.
LVGL Features

• Many built in **Widgets:**
 - buttons, charts, lists, sliders, images, etc.

• Advanced graphics with animations
 - anti-aliasing, opacity, smooth scrolling
LVGL Features

- Many built in **Widgets**:
 - buttons, charts, lists, sliders, images, etc.
- Advanced graphics with animations
 - anti-aliasing, opacity, smooth scrolling
- Fully customizable with **CSS-like styles**
LVGL Features

- Many built in Widgets:
 - buttons, charts, lists, sliders, images, etc.
- Advanced graphics with animations
 - anti-aliasing, opacity, smooth scrolling
- Fully customizable with CSS-like styles
- Supports various input devices:
 - touchpad, mouse, keyboard, encoder, etc.
LVGL Features

- Many built in Widgets:
 - buttons, charts, lists, sliders, images, etc.
- Advanced graphics with animations
 - anti-aliasing, opacity, smooth scrolling
- Fully customizable with CSS-like styles
- Supports various input devices:
 - touchpad, mouse, keyboard, encoder, etc
- Multi-language support with UTF-8 encoding
LVGL Features

- Many built in **Widgets**:
 - buttons, charts, lists, sliders, images, etc.
- Advanced graphics with animations
 - anti-aliasing, opacity, smooth scrolling
- Fully customizable with **CSS-like styles**
- Supports various input devices:
 - touchpad, mouse, keyboard, encoder, etc
- Multi-language support with UTF-8 encoding
- Binding to **MicroPython**
Scalable and Portable
Scalable and Portable

- Written in C for maximal compatibility
 - C++ compatible
Scalable and Portable

- Written in C for maximal compatibility
 - C++ compatible
- Hardware independent:
 - use with any MCU and display
Scalable and Portable

- Written in C for maximal compatibility
 - C++ compatible
- Hardware independent:
 - use with any MCU and display
- OS, external memory, GPU are optional
Scalable and Portable

- Written in C for maximal compatibility
 - C++ compatible
- Hardware independent:
 - use with any MCU and display
- OS, external memory, GPU are optional
- Scalable:
 - from small MCUs (>64 kB Flash, 16 kB RAM)
 - to desktop PCs with 4k displays
Porting LVGL
Porting LVGL

- Only 2 functions are needed to port LVGL:
Porting LVGL

• Only 2 functions are needed to port LVGL:
 1. A **Render ready callback**
 - to copy the rendered image to the screen
Porting LVGL

- Only 2 functions are needed to port LVGL:
 1. A **Render ready callback**
 - to copy the rendered image to the screen
 2. An **Input read callback**
 - to read the touchpad or other device
Porting LVGL

- Only 2 functions are needed to port LVGL:
 1. A **Render ready callback**
 - to copy the rendered image to the screen
 2. An **Input read callback**
 - to read the touchpad or other device
- **Flexible architecture:**
 - you can add GPU support in the pipeline
 - hook any drawing drawing operations
Design with SquareLine
($)$
The Oniro Project

- An independent Eclipse Foundation project
The Oniro Project

- An independent Eclipse Foundation project
- An open source distributed operating system
 - For diverse IoT devices (big and small)
 - Cross kernel, focus on interoperability
The Oniro Project

- An independent Eclipse Foundation project
- An open source distributed operating system
 - For diverse IoT devices (big and small)
 - Cross kernel, focus on interoperability
- Defragment development for embedded sys:
 - Avoid technology silos
 - Unified tooling, common policies,
UI Requirements
UI Requirements

• Oniro can support FLOSS toolkits:
 ▪ Qt, GTK+, EFL... or Web frameworks
UI Requirements

• Oniro can support FLOSS toolkits:
 ▪ Qt, GTK+, EFL... or Web frameworks
• LVGL works on many flavors of Oniro devices
 ▪ A common denominator for CPU/MCU
 ○ For cross kernel Oniro apps
UI Requirements

• Oniro can support FLOSS toolkits:
 ▪ Qt, GTK+, EFL... or Web frameworks
• LVGL works on many flavors of Oniro devices
 ▪ A common denominator for CPU/MCU
 ○ For cross kernel Oniro apps
• Challenge: Prototype app on CPU (Linux)
 ▪ rebase on MCU (Zephyr or Other)
Oniro Linux flavour
Oniro Linux flavour

• Reference "Vending machine" blueprint
Oniro Linux flavour

- Reference "Vending machine" blueprint
- Using lvgl v8 with wayland driver
 - build using bitbake recipe
 - Upstreamed (meta-openembedded)
Oniro Linux flavour

- Reference "Vending machine" blueprint
- Using lvgl v8 with wayland driver
 - build using bitbake recipe
 - Upstreamed (meta-openembedded)
- 2 apps: UI + controller (websockets)
Oniro Linux flavour

- Reference "Vending machine" blueprint
- Using lvgl v8 with wayland driver
 - build using bitbake recipe
 - Upstreamed (meta-openembedded)
- 2 apps: UI + controller (websockets)
- Shipped into customized distro with variables:
 - Screen size, allocator, fonts
 - weston config for kiosk application
Oniro's Vending machine
Oniro Zephyr flavour

- Oniro blueprint: "Keypad device"
 - Custom zephyr-keypad app (WIP)
 - built using bitbake (meta-zephyr layer)
 - shipping zephyr fork of LVGL (v7)
 - work out of the box on nRF52840
Oniro Zephyr flavour

- **Oniro blueprint: "Keypad device"
 - Custom *zephyr-keypad* app (WIP)
 - built using bitbake (*meta-zephyr* layer)
 - shipping *zephyr* fork of LVGL (v7)
 - work out of the box on nRF52840
- **Oniro's plan: *meta-zephyr* (Goofy)
 - Align to v8 : *zephyr*'s lvgl (Thx @brgl)
 - KConfig to customize (thx @pidge)
Oniro Zephyr flavour

- Oniro blueprint: "Keypad device"
 - Custom **zephyr-keypad** app (WIP)
 - built using bitbake (meta-zephyr layer)
 - shipping zephyr fork of LVGL (v7)
 - work out of the box on nRF52840
- Oniro's plan: **meta-zephyr** (Goofy)
 - Align to v8 : zephyr's lvgl (Thx @brgl)
 - KConfig to customize (thx @pidge)
- Challenge: Cross kernel **dialog-lvgl** app
Summary
Summary

- LVGL is portable library for MCU
Summary

- LVGL is portable library for MCU
- Also CPU using drivers: Wayland, SDL
Summary

- LVGL is portable library for MCU
- Also CPU using drivers: Wayland, SDL
- Oniro is crosskernel OS
 - with "blueprint" projects using LVGL
 - Linux: Vending machine
 - Zephyr: Keypad
Summary

• LVGL is portable library for MCU
• Also CPU using drivers: Wayland, SDL
• Oniro is crosskernel OS
 ■ with "blueprint" projects using LVGL
 ○ Linux: Vending machine
 ○ Zephyr: Keypad
• Visit FOSDEM Oniro's stand for more!
Resources and more:

- https://lvgl.io/
 - https://github.com/lvgl/lvgl
- https://oniroproject.org/
 - https://docs.oniroproject.org/
 - https://booting.oniroproject.org/
- https://eclipse.org/
- https://yoctoproject.org/
- https://zephyrproject.org/
Extras?

- Fosdem 2021
- EclipseCon 2021
- SFSCON2021
Howto: Vending machine
Welcome to Oniro

Video Playback