FOSS on Mobile Devices - Camera BoF

Jacopo Mondi

FOSDEM 2022
Hello, I’m Jacopo

- Linux camera engineer
- jacopo@jmondi.org
- irc: jmondi oftc/libera
- matrix: @jmondi:nibble.pw
Hello, I’m Jacopo

- Linux camera engineer
- libcamera
- V4L2 camera driver
The image capture pipeline
The 3A loop
A taxonomy of camera systems
The complex camera interface
The case for a camera stack
The image capture pipeline

It all starts with light beams being converted into electric signals.
Electrical information captured by the image sensor represents color channels in the RAW Bayer pattern of the sensor.
The image capture pipeline

The Bayer pattern gets ‘debayered’ and converted into a known color space
Electrical information are manipulated in both analog and digital domains, with a large number of correction and enhancement techniques:

- Defective pixel correction
- Lens shading
- Black level correction
- ... you name it
A long way to reach the final image

- Cropping or sub-sampling applied on the image sensor pixel array
- Cropping or re-scaling in the digital domain
- Rotation/flipping/mirroring etc
- Color format conversion (eg RAW-to-YVV)
- Color space conversions (RGB-to-YUV)
- Packaging and compression (JPEG, DNF etc)
Image capture is a closed-loop system
The 3A loop

Image capture is a closed-loop system

ISP Image Signal Processor
Image capture is a closed-loop system
A taxonomy of camera systems

Designs with a smart sensor
A taxonomy of camera systems

- User visible functionalities depends on the selected sensor
User visible functionalities depend on the selected sensor

Sensor are (still) programmed through binary blobs
A taxonomy of camera systems

- User visible functionalities depends on the selected sensor
- Sensor are (still) programmed through binary blobs
- Vendor lock-in
A taxonomy of camera systems

- User visible functionalities depends on the selected sensor
- Sensor are (still) programmed through binary blobs
- Vendor lock-in
- Higher BOM costs
A taxonomy of camera systems

Designs with an ISP
A taxonomy of camera systems

- The SoC usually runs Linux
A taxonomy of camera systems

- The SoC usually runs Linux
 - The code that controls the ISP is potentially accessible
A taxonomy of camera systems

- Features and performances
A taxonomy of camera systems

- Features and performances
 - High speed interconnects, higher clock rates
 - Extended features set
A taxonomy of camera systems

- Higher chances of code re-use and standardization
A taxonomy of camera systems

- Higher chances of code re-use and standardization
 - Reusable 3A algorithms
A taxonomy of camera systems

- Higher chances of code re-use and standardization
 - Reusable 3A algorithms
 - Open HW designs
The complex kernel interface

The single devnode abstraction

/dev/video0

V4L2

receiver driver

sensor driver

system memory

receiver

sensor

pixel data

i2c messages

i2c

KERNEL

HARDWARE
The complex kernel interface

The media controller abstraction

receiver driver → isp driver

receiver

resizer

converter

formatter

pixel formatter

system memory

/kernel

/dev/v4l-subdev-1
/dev/video0
/dev/v4l-subdev-2
/dev/v4l-subdev-4
/dev/v4l-subdev-5

FOSDEM 2022 Camera on FOSS mobile devices (26/46)
The complex kernel interface

Why so complex??
The complex kernel interface

The single devnode abstraction

```
receiver
data
receiver
receiver driver

V4L2

sensor

sensor driver

system memory

{1080p, NV12}

/dev/video0

KERNEL

HARDWARE

FOSDEM 2022

Camera on FOSS mobile devices (28/46)```
The complex kernel interface

The single devnode abstraction

```
{1080p, NV12}
/dev/video0

receiver driver
V4L2
sensor driver

{1080p, NV12}

system memory

receiver
sensor

pixel data
i2c messages

i2c

KERNEL

HARDWARE
```
The complex kernel interface

The media controller abstraction

{1080p, NV12}
The complex kernel interface

The media controller abstraction

{1080p, NV12}

Camera on FOSS mobile devices (31/46)
The complex kernel interface

The media controller abstraction

The media controller abstraction

\{1080p, NV12\}

\{1080p, NV12\}

\{1080p, SBGGR\}

Camera on FOSS mobile devices (32/46)
The complex kernel interface

The media controller abstraction

- subdev-1
- subdev-1
- subdev-2
- subdev-3
- subdev-4
- /dev/video0

CSI-2
ISP
pixel formatter

KERNEL
resizer
formatter

{1080p, NV12}

sensor
i2c messages

i2c
HARDWARE

FOSDEM 2022
Camera on FOSS mobile devices (33/46)
The case for a camera stack

Complex cameras

- User-space has to configure precisely each point in the pipeline
The case for a camera stack

Complex cameras

- User-space has to configure precisely each point in the pipeline
- An operating system should enable use cases, not hard-code them
The case for a camera stack

Complex cameras

- User-space has to configure precisely each point in the pipeline
- An operating system should enable use cases, not hard-code them
- Platform-dependent configuration that has to be applied to the system to realize the desired use case
The case for a camera stack

Applications got stuck

- Regular desktop application (Cheese): UVC cameras
- Gstreamer is the most common way to interface with cameras
- On embedded systems the ’system configuration’ is usually a collection of scripts
The case for a camera stack

libcamera
The case for a camera stack

libcamera

- Isolate device-specific components
The case for a camera stack

libcamera

- Isolate device-specific components

  - A camera pipeline handler is hardware support
  - Vendor should ideally provide one as part of their BSPs
  - To get them on-board quite some critical mass is needed
The case for a camera stack

libcamera

- Provide a generic API and a standardized set of controls to applications
The case for a camera stack

libcamera

- Provide a generic API and a standardized set of controls to applications
  - Abstract away platform specific details
  - Adaption layers: gstreamer, Android Camera3, V4L2 emulation
The case for a camera stack

libcamera

- Library of 3A algorithms
The case for a camera stack

libcamera

- Library of 3A algorithms
- Framework for open source implementations to compete with proprietary ones
- State of the art: Raspberry Pi IPA library
Does this apply to FOSS mobile devices too?
Thank you for your attention

I hope you will enjoy the rest of the discussion