Genode meets the Pinephone

Norman Feske
<norman.feske@genode-labs.com>
1. Background

2. Development Story

3. Preview of Sculpt OS on the Pinephone

4. What’s next?
1. Background

2. Development Story

3. Preview of Sculpt OS on the Pinephone

4. What’s next?
Motivation

Power struggle

Dominating Corporations <-> Civil Society

Genode meets the Pinephone
Corporate Motives

1. Profits, growth

2. Recurring and growing revenue
 ▶ Increase the customer base
 ▶ Keep existing customers paying
 ▶ Raise margins whenever possible

3. Fostering customer retention
 ▶ Leverage platform effects
 ▶ Create dependencies
 ▶ Introduce complexity, give aid

 → Addicts are the best customers

4. Seeking holistic knowledge
People are addicted to smartphones.

Smartphones need constant medication.
Curation of Apps, Security updates, Follow fashion

Two corporations dominate.
My motives as a member of Civil Society

1. Participation in (digital) society

2. Enjoying the utility value of smartphones

3. Digital Autonomy
 - Dependability \rightarrow no changes without my consent
 - Dignity \rightarrow my attention is mine, no Ads, no tracking
 - Privacy of communications
 - Protection of personal data

4. Sustainability \rightarrow environmental footprint, learned skills
Risks for Conflicts of Interest

- Subscription-business models → \textit{taxation of digital life}

- Data silos

- Mass surveillance

- Growing extortive power of dominant corporations

- Artificial aging of digital products → \textit{Electronic waste}
These are political problems...
...outside the scope of the Microkernel Devroom.

But as technologists, we can draft alternative paths!
Precursor by Sutajio Kosagi

- Custom FPGA-based SoC
- Open-Source Hardware
 (board, schematics)
- Custom Open-Source firmware / OS
- Crowdfunded at
 https://www.crowdsupply.com
- Deliberate deviation from smartphones
What about Smartphones?

Pinephone by Pine64

- Open-Source-friendly

 (public documentation, schematics)

- Targeting the Linux community

 (mainline kernel, diverse distributions)

- Well-understood 64-bit ARM SoC

- Readily available

 https://www.pine64.org

PINEPHONE – Beta Edition Linux SmartPhone

Community price: $149.99

(Retail price: $249)
Open Source is not enough

Complexity defeats autonomy.

Linux distributions are impossible to assess. We need to be faithful in an incomprehensible software stack.

No cure for security-update treadmill in sight.
Genode OS Framework

Genode meets the Pinephone
Mission: Combine Genode OS with the Pinephone

Aspired features

- Telephony
- Messaging
- Web browsing
- Encrypted communication
- Encrypted storage
- Good battery life

Out of scope

- Entertainment
- Comfort functions (digital camera, turn-by-turn navigation, ...)

1. Background

2. Development Story

3. Preview of Sculpt OS on the Pinephone

4. What’s next?
Development Story - Genode boot steps

Genode meets the Pinephone
A few lines of C...

```c
static char const *text = "Aye aye.\n\r";
static char const *s;

for (;;) {
  for (s = text; *s; s++)
    *(unsigned int volatile *)0x1c28000 = *s;
}
```

...plus a little Makefile...

```
serial_test: main.c
  $(CROSS_DEV_PREFIX)gcc -Wl,-Ttext=0x42000000 -nostdlib $< -o $@
  $(CROSS_DEV_PREFIX)objdump -ld $@
serial_test.img: serial_test
  $(CROSS_DEV_PREFIX)objcopy -Obinary $< $@
```

... can be a way to happiness!
Allwinner A64 SoC

- Cortex-A53, 4-core ARM v8a
- GICv2 interrupt controller
- Generic timer
- NS16550 UART
- RAM layout

→ Merely selecting existing parts of the base-hw kernel
Development Story - Porting the Kernel

Genode meets the Pinephone

Tree representation of the project structure:

- **base-hw/**
 - **lib/**
 - **mk/**
 - spec/
 - arm_v8/
 - bootstrap-hw-imx8q_evk.mk
 - core-hw-imx8q_evk.mk
 - src/
 - include/
 - hw/
 - spec/
 - arm_64/
 - imx8q_evk_board.h
 - bootstrap/
 - board/
 - imx8q_evk/
 - platform.cc
 - board.h
 - core/
 - board/
 - imx8q_evk
 - board.h

- **allwinner/**
 - **lib/**
 - **mk/**
 - spec/
 - arm_v8/
 - bootstrap-hw-pine_a64lts.mk
 - core-hw-pine_a64lts.mk
 - src/
 - include/
 - hw/
 - spec/
 - arm_64/
 - pine_a64lts_board.h
 - bootstrap/
 - board/
 - pine_a64lts/
 - platform.cc
 - board.h
 - core/
 - board/
 - pine_a64lts
 - board.h
Development Story - Device access

- Core / Init
- MMIO
- IRQ
- PIO Test

access to any device

ultimate authority

Genode meets the Pinephone
Development Story - Device access

Genode meets the Pinephone 22
Genode meets the Pinephone
Development Story - Cascaded authorities

- **Core / Init**
- **MMIO**
- **IRQ**
- **Platform Driver**
- **PIO Driver**
 - **Pincontrol**
 - **IRQ**
- **Platform**
 - **Platform Driver**
 - **GPIO pin 8 at bank H**
 - **authority to observe all GPIO pins**
 - **authority over all device resources**
 - ** IRQ**
 - **MMIO**
 - **authority to control GPIO pin 2 at bank B**
 - **authority to control GPIO pin 2 at bank B**
 - **Core / Init**
 - **ultimate authority**
Development Story - Experimental setup

Genode meets the Pinephone
ARM SoCs are less regular than PC hardware

- Complex interplay of device units
 - Power regulators
 - Clocks, Resets
 - Variety of buses, quirky details
- Board-dependent pin functions (IOMUX)
- Lacking documentation

The only reliable reference is the Linux kernel

- Device trees = hardware documentation
- Porting beats developing
- Start with reasonable complex example → *Ethernet*
Getting an overview of the Pine-A64-LTS hardware...
Custom tooling for pruning device trees

```
tool/dts$ ./extract -select emac flat_pine64lts.dts > emac.dts
```
SoC parts relevant for the EMAC network device
Development Story - Configuring a bare-bones Linux kernel
Configuration bisecting as last resort

kernel fundamentals
LX_ENABLE += TTY SERIAL_EARLYCON SERIAL_OF_PLATFORM PRINTK HAS_IOMEM

initrd support
LX_ENABLE += BINfmt_ELF BLK_DEV_INITRD

SoC
LX_ENABLE += ARCH_SUNXI

UART device
LX_ENABLE += SERIAL_8250 $(addprefix SERIAL_8250_,16550A_VARIANTS DW CONSOLE)

network infrastructure
LX_ENABLE += NET NETDEVICES ETHERNET

network driver
LX_ENABLE += NET_VENDOR_STMICRO STMMAC_ETH STMMAC_PLATFORM DWMAC_SUN8I

ethernet PHY
LX_ENABLE += OF_MDIO MDIO_DEVICE PHYLIB
LX_ENABLE += MOTORCOMM_PHY # needed for Pine-A64-LTS-V2

network protocols
LX_ENABLE += INET IP_PNP IP_PNP_DHCP

Genode meets the Pinephone
Development Story - Linux Device-Driver Environment

Genode meets the Pinephone
Nice Pinephone features

- Can boot directly from SD card!
- Audio jack can be turned into serial line!
- Accessible reset button!

Development workflow considerations

- SD-card juggling not viable
- Boot-loader customization
 - No Ethernet → no TFTP boot
 - Exploration of U-Boot’s fastboot support
- Genode workflow automation (custom run-tool plugins)
Development Story - Pinephone as development platform
Development Story - Pinephone as development platform
Development Story - Display

Genode meets the Pinephone
framebuffer driver
LX_ENABLE += DRM DRM_SUN4I DRM_SUN8I_MIXER DRM_SUN8I_DW_HDMI

determined by bisecting kernel configuration options (needed by fb driver)
LX_ENABLE += CMA DMA_CMA MFD_AXP20X_RSB REGULATOR REGULATOR_AXP20X
LX_ENABLE += PROC_FS SYSFS

to automatically set up screen mode at boot time
LX_ENABLE += FRAMEBUFFER_CONSOLE

show Tux
LX_ENABLE += LOGO
Development Story - Cutting down Linux

Genode meets the Pinephone
Development Story - Transplanting Linux code to Genode

1. Selecting the relevant driver sources

2. Compiling and linking

3. Generating dummy implementations of unresolved symbols

   ```
   $ tool/dde_linux/create_dummies generate \
   LINUX_KERNEL_DIR=a64_linux \ 
   TARGET=drivers/framebuffer/de
   ```

4. Supplementing custom Linux emulation code, looking sideways

5. Using a custom run script test bed for the driver

6. Resolving the access to device resources at the platform driver

Genode meets the Pinephone
Development Story - Display

Framebuffer Driver

Genode meets the Pinephone
Development Story - Display and Touch

Framebuffer Driver
- SYSCON
- DSII
- GPIO
- DPHY
- DE2 BUS
- SYSCON
- R_GPIO
- R_PIN
- I2C0
- PMIC

Touchscreen Driver
- Goodix
- TCON0
- TCON1
- R_PWM
- R_PIN
- R_GPIO

Genode meets the Pinephone
Development Story - Reconciliation

Framebuffer Driver

Touchscreen Driver

Clock

Power

Reset

PIO

DPHY

SYSCON

DSI

DE2/BUS

R_PWM

TCNO

TCNO1

CCU

R_RSB

R_CCU

R_INT

PIO

RPIO

I2C0

Goodix

Genode meets the Pinephone
1. Background

2. Development Story

3. Preview of Sculpt OS on the Pinephone

4. What’s next?
1. Background

2. Development Story

3. Preview of Sculpt OS on the Pinephone

4. What’s next?
What's next?

Goal for 2022: Video chat via Genode/Sculpt on the Pinephone

- Voice telephony
- Persistent storage (SDcard, eMMC)
- Mobile-data connectivity
- Power management
- Performance
- Chromium browser
- Camera
- Real-time media streaming
- Wireless networking
- Simple mobile UI
"Pine fun" article series

https://genodians.org
Evolving “Genode Porting Guide” document

https://genode.org
Genode OS Framework
 https://genode.org

Sculpt OS download and manual
 https://genode.org/download/sculpt

Genodians.org community blog
 https://genodians.org

Genode Labs GmbH
 https://www.genode-labs.com

Company newsletter
 https://genode-labs.com/newsletter