Package URL
and Version Range spec

Towards (mostly) universal dependency resolution

Package URL
and Version Range spec

Towards (mostly) universal dependency resolution

Philippe Ombredanne

> ScanCode and AboutCode projects lead and maintainer

> Creator of Package URL, co-founder of SPDX, ClearlyDefined
> FOSS veteran, long time Google Summer of Code mentor

> Co-founder and CTO of nexB Inc., makes of DejaCode

> Weird facts and claims to fame

* Signed off on the largest deletion of lines of code in the
Linux kernel (but these were only comments)

* Unrepentant code hoarder. Had 60,000+ GH forks
now down only to 20K forks

> pombredanne@gmail.com irc:pombreda

© 2022 nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

Things are getting hairy and complex!!
> Ever more FOSS packages are reused

® 10x to 100x more than a few years ago
® Yes! we can really build applications from components!

> Complex stacks with multiple tech and languages
®Deep dependency trees
®Dependencies on both application and system packages

> Unstated dependencies across
®package ecosystem boundaries
®system and application boundaries

> More bugs and vulnerabilities!

© 2022 nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

How can we deal with this complexity?
> Hand crafted, good old README with installation instructions
* |Install these debian packages, these npm packages and these Python packages
> Replace all package managers with one to rule them all
Gain total control, all the way down with ...

> ... massive mono repo and "hermetic" build system
* Big tech use these with Bazel or Buck

> ... general purpose package managers
* Like Spack or Conda

> ... "functional" package managers
* Like nix or guix

© 2022 nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

What is dependency resolution?

> Start with package you directly depend on
* name & version (or version range)
> Access some package index or metadata source
* collect all known versions of the package
> Select one version that matches the range you need
> For this version, collect the packages it depends on
* names and versions (or version range)
> Repeat recursively
> Update selected names and versions as needed until consistent
* Can be involved algos using sat solvers, backtracking, etc.
> Finally install these packages (not today's scope)

© 2022 nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

The many curious ways of versioning

> Resolving package dependencies
*"l require package <ABC>, version 2.0 or later versions”
> Affected vulnerable versions

* "vulnerability CVE-2021-1 affects <XYZ>, version 3.1 and
version 4.2 but not version 5"

> Version numbers should be boring
> Yet each ecosystem has its own way for version and range!

Debian, RPM, npm, PyPI, Ruby, etc. have their different notations
using comparators >, < or =, or tilde ~ or caret * or star *

> Each resolve a dependency version in a range differently

© 2022 nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

What if

> We could express a dependency in a mostly universal way?
> And not replace all package managers BUT rather rule them all

> Use Package URL "purl" to name a package across ecosystem
> Add new "vers" Version Range Spec for ranges

* For any ecosystem, building on Package URL "package type”

* Simplified comparators set: >, <, =, 1=, <=, >=

* Ecosystem-specific version comparison
> Designed for dependency ranges AND vulnerability ranges

© 2022 nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

We need new standards to rule them all!

HOW STANDARDS PROLFERATE:
(sEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

17 RiDIcULoUs! SOON:
WE NEED To DEVELOP

.|| ONE UNVERSAL STANDARD ,
SITUATION: || Tiar covers Everyone's | | STTUATION:

THERE ARE USE CASES. ey THERE. ARE
I4 COMPETING * 15 COMPETING

STANDPRDS. \C%) %7} STANDPRDS.

. .
Credits: https://xkcd.com/927/
xkcd.com is best viewed with Netscape Navigator 4.0 or below on a Pentium 3+1 emulated in Javascript on an Apple 1IGS
at a screen resolution of 1024x1. Please enable your ad blockers, disable high-heat drying, and remove i

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License.https://creativecommons.org/licenses/by-nc/2.5/

Package URL (purl)

>

>

\

\YARRY

vV V.V

Problem: Each package type/ecosystem has its own conventions to identify, locate and
provision software packages

Solution: An expressive package-url string, minimalist yet obvious

|ldentify & locate software packages reliably across tools and languages.
pkg:npm/foobar@l2.3.1

pkg:pypi/django@l.11.1

Started with ScanCode and VulnerableCode and now adopted in many places

Now a de-facto standard used in ORT, OSSF OSV, CycloneDX, SPDX, Sonatype
OSSiIndex, GitHub and many places.

Libraries in Java (multiple), PHP, Go, Python, JavaScript, Ruby, Swift, Rust, .Net,
Recommended by the US NTIA as an SBOM package identifier
See https://github.com/package-url/purl-spec

Package URL in the news this week

"Component verification and vulnerability
reporting are supported by some SBOM data
formats today. Globally unique identifiers is
a work in process supported by the leading
data formats for package URLs (PURLs)."

https.//linuxfoundation.org/wp-content/uploads/LFResearch SBOM Report final.pdf
Software Bill of Materials (SBOM) and Cybersecurity Readiness

January 2022
Stephen Hendrick, VP Research, The Linux Foundation

Version Range Spec (vers)

> Problem: Each package type/ecosystem has its own convention to specify version ranges
> Solution: An expressive version range string, minimalist yet obvious

> Specify version ranges reliably across tools and languages for deps and vulnerabilities.
vers:npm/1.2.3|>=2.0.0|<5.0.0
vers:pypi/0.0.1|10.0.2|0.0.3]1.0|2.0prel
> A version range specifier ("vers") is a URI string using the vers scheme and this syntax:
vers:<versioning-scheme>/<version-constraint>|<version-constraint>]|...
> Started with VulnerableCode with "univers" library and now used in CycloneDX
* Goal is to be a useful adjunct to purl
> Can pave the way to universal dependency resolution engines
* Would still need to have access to all the package versions... working on it!

> See https://github.com/package-url/purl-spec/blob/version-range-spec/VERSION-RANGE-
SPEC.rst

Putting it all together

A mostly universal package name (purl) with a mostly universal version range (vers)
opens up many possibilities:
> Store vulnerable version ranges and evaluate later if a version is vulnerable

* Prototype in univers library and VulnerableCode

* https://github.com/nexb/vulnerablecode
* https://github.com/nexB/univers

> Build a multi package installer for many ecosystems

* Prototype toy at https://gist.github.com/pombredanne/d3585617882f91d9316be5ce5eddf190
> Write mostly universal dependency declarations

* Soon in https://github.com/nexB/scancode-toolkit
> Write a mostly universal dependency resolver?

* Say goodbye to README installation instructions!
An incremental approach instead of replacing everything

SCA AUTOMATION IS HARD

> But it is nearly impossible if no one speaks the same
language
> To de-babelize this, we need shared names for:
*Licenses
* Packages
*\Versions
* Vulnerabilities
* Version control references

© 2022 nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/
[

The Naming of Cats is a difficult matter

> License names
O Mostly solved with SPDX license ids and expressions
O Plus scancode-licensedb DB of most FOSS licenses

> Software package names

O Mostly solved with Package URL emerging as a de-facto standard
> Version range notation for dependencies and vulnerable ranges

O New mini spec for Version Range Specifiers
> Vulnerability identifiers

O Mostly solved with NVD's CVE and aliases

> Version control system references
O Likely solved with VCS URLs adapted from Python pip, now in SPDX

Credit https:/www.severnedgevets.co.uk/pets/advice/advice-new-kitten-owners
Credit: T.S. Eliot, "Old Possum's Book of Practical Cats"

© 2022 nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

15

If you want to help

You can contribute code, time, docs (or cash?)
> Use these fine FOSS tools and specs

* https://github.com/package-url

* https://www.aboutcode.org/

* https://github.com/nexB/

> Join the conversation at

* https://qgitter.im/aboutcode-org

> Donate at

* https://opencollective.com/aboutcode

© 2022 nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/ 16
[

Credits

i
S

e =

~ Special thanks to all the people who made and released
- these excellent free resources:

> Presentation template by SlidesCarnival
-~ [> Photographs by Unsplash
- D All'the open source software authors that made
' ScanCode and AboutCode possible

P

e A

© 2022 nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

http://www.slidescarnival.com/
http://unsplash.com/

