
Predictable Network Traffic in K8s

Dave Cremins – Cloud Software Architect (xPSD)

Abdul Halim – Senior Software Engineer (xPSD)

Predictable Network Traffic in KubernetesFOSDEM 2022 2

Agenda

▪ Current state of microservices from a networking perspective

▪ Network contention in Cloud Native deployments

▪ Application Device Queues

▪ Orchestration flow

▪ Some preliminary results

Predictable Network Traffic in KubernetesFOSDEM 2022 3

Microservices
▪ Software pattern that promotes the decomposition of an application into small

operating pieces with well-defined boundaries of functionality

▪ The individual pieces (i.e. services) are integrated together via API interfaces in a loosely
coupled environment

▪ Commonly packaged as containers and deployed into orchestration platforms

▪ These API interfaces rely heavily on the network in order to communicate with each
other

• Huge increase in East-West traffic

• 100s of services/containers running on a single compute platform

• Potentially 1000s running on distributed platforms

• Full request/response cycle will pass through many microservices

▪ What about multi-tenant deployments in the context of Cloud Native & Hyperscalers?

Predictable Network Traffic in KubernetesFOSDEM 2022 4

Cloud Native Microservices Examples

1500 Microservices~2200 Microservices

Uber graph 2018 Monzo graph 2019

Predictable Network Traffic in KubernetesFOSDEM 2022 5

Let’s revisit the networking aspect
▪ More microservices means more EW

traffic => results in more
demand/dependency on the network

▪ As traffic increases, extra jitter can result
in unpredictable response times for
services

▪ Net affect of all of these concerns is
degradation of SLAs via reduced
performance and increased latency

▪ We need a way to prioritize
communication for specific services i.e.
More predictability for higher priority
applications

Ethernet is like a freeway system for data travelling between
different systems in a distributed environment

Predictable Network Traffic in KubernetesFOSDEM 2022 6

Application Device Queues (ADQ)
▪ ADQ is designed to improve application specific queuing and

steering

▪ ADQ works by:
• Filtering application traffic to a dedicated set of queues
• Application threads of execution are connected to specific

queues within the ADQ queue set
• Bandwidth control of application egress (Tx) network

traffic

reduces
application
Latency

Improves
application

Throughput

Increases

Application

predictability

With ADQ
Application traffic to a dedicated set of queues

Without ADQ
Application traffic intermixed with other traffic types

▪ ADQ Benefits:

Predictable Network Traffic in KubernetesFOSDEM 2022 7

ADQ: Hardware View
▪ Enables a path from Epoll that leverages BPS

(Busy Polling Sockets), polling is configured on
the platform

▪ Provides a “hint” for application threads to
monitor specific sockets and align

• e.g., sockets on the same queue, handled by the same
thread

• Single producer-consumer per queue affinitization

▪ Configures an application identifier on the NIC
to steer traffic to dedicated load balanced
queues

▪ Configures TX rate limiting on the NIC per
application identifier

▪ Performance optimizations in the NIC driver

• interrupts and load balancing optimizations

Predictable Network Traffic in KubernetesFOSDEM 2022 8

Application Device Queues in
Kubernetes

Predictable Network Traffic in KubernetesFOSDEM 2022 9

Kubelet

Device Manager Network Plugin: CNI

Cilium-veth

ADQ CNI

Intel E810 Ethernet

Port Port

enp176s0f0

Pod

eth0

ADQ Netprio

K8s API Server▪ Resource management – K8s Device Plugin

• Accountability of HW queues on host

• HW queue allocations for containers/apps

• Scheduling + on-node allocation

▪ RX configuration – CNI plugin

• Configures HW queue filters using Pods IP and application
port info

• Deployed as a CNI chain with Cillium CNI with veth mode

• Application information(port/protocol) via Pod spec

▪ TX configuration – cgroup net_prio

• Watches for “readiness” of Pod with ADQ resources

• Finds Pods cgroup information, and adds net_prio for its
network interface

Application Device Queues in Kubernetes

HW Q Sets

Configure TX

Configure RX

Manage TCs

Register TCs

Watches for Pod with ADQ requests

ADQ Device Plugin

Predictable Network Traffic in KubernetesFOSDEM 2022 10

Requesting ADQ: Memcached server

apiVersion: v1
kind: Pod
metadata:

name: memcached-adq
namespace: adqb
labels:
app: memcached-server

annotations:
net.v1.intel.com/adq-config: '[{ "name": "memcached", "ports": { "local": ["11211/TCP"] } }]'

spec:
nodeSelector:
adq-benchmark: server

hostname: memcached-adq
subdomain: memcached-servers
containers:
- name: memcached
image: memcached:1.6.10
imagePullPolicy: IfNotPresent
command: ["memcached"]
args: ["-t", "4", "-N", "4", "-c", "5000", "-p", "11211", "-M", "-o", "lru_maintainer"]
resources:

limits:
cpu: 4
memory: 1Gi
net.intel.com/adq: 1

ports:
- containerPort: 11211
readinessProbe:

tcpSocket:
port: 11211

Predictable Network Traffic in KubernetesFOSDEM 2022 11

Requesting ADQ: Memcached client

apiVersion: v1
kind: Pod
metadata:

name: memcached-bench-adq
namespace: adqb
annotations:
net.v1.intel.com/adq-config: '[{ "name": "memcached-client", "ports": { "remote": ["11211/TCP"] } }]'

spec:
nodeSelector:
adq-benchmark: client

restartPolicy: Never
containers:
- name: memcached-client
image: rpc-perf:v0.1
command: ["sleep", "36000"]
resources:

limits:
cpu: 4
memory: 1Gi
net.intel.com/adq: 1

volumeMounts:
- name: config

mountPath: /etc/rpc-perf/config
volumes:
- name: config
configMap:

name: rpc-perf-cm

Predictable Network Traffic in KubernetesFOSDEM 2022 12

Latency comparison: no ADQ vs with ADQ

Predictable Network Traffic in KubernetesFOSDEM 2022 13

Closing comments

▪ ADQ is a technology designed to improve application specific queuing and steering

▪ It allows filtering of application traffic to a dedicated set of queues

▪ It optimizes how data polling is performed

▪ ADQ addresses three important factors: predictability, latency, and throughput

▪ K8s orchestration code is in final stages to be open sourced

▪ Waiting for the following features to be up-streamed:

• Tc flower forward to hw queue filters

• Per-tc inline flow director

• Per-tc qps_per_poller

• Per-tc poller_timeout

▪ Kernel version 4.19+

14

