Graph Stream Zoomer
Distributed grouping of property graph streams

FOSDEM 2023 – Graph Devroom

Christopher Rost
rost@informatik.uni-leipzig.de
4rd February 2023

https://github.com/dbs-leipzig/graph-stream-zoomer
About us

↑ Prof. Dr. Erhard Rahm
Head of database department
University of Leipzig

← Christopher Rost
PhD student since 2018

Max Zimmer →
Master student

Elias Saalmann
Alumnus - University of Leipzig

Rana Noureddin
Alumna - University of Leipzig
What you should take away from this talk

- What is a property graph stream?
- Why should I group a graph stream?
- What is the “graph stream zoomer” and which grouping configuration leads to which results?
- What are the implementation challenges?
- How can I use the graph stream zoomer?
Basics and motivation

- What is an (event-) stream?
- What is a graph stream?
- Why a graph stream?
- Why grouping of graph streams?

event
anything that happens at a clearly defined time and that can be specifically recorded

event stream
sequence of events ordered by time

event processing
identify meaningful events and respond to them as quickly as possible

bike rental events

stock prices

online purchases
Basics and motivation

- What is an (event-) stream?
- **What is a graph stream?**
- Why a graph stream?
- Why grouping of graph streams?

graph stream

event stream where an event is a graph element or update

graph element

vertex, edge, triple possibly labeled and attributed

graph update

modification of the graph structure and content, e.g., edge insertion/deletion
Basics and motivation

- What is an (event-) stream?
- What is a graph stream?
- Why a graph stream?
- Why grouping of graph streams?

execution of graph analysis algorithms (e.g., PageRank) **concurrently** with graph updates

updates of analysis results with a low latency in (near) real time

goal monitoring and/or notification/reactivity
Basics and motivation

- What is an (event-) stream?
- What is a graph stream?
- Why a graph stream?
- Why grouping a graph stream?

- graph streams may be heterogeneous and high frequent
- get overview and reduce complexity on different levels
- summarize graph elements/updates on similar characteristics
 - **time**, **structure**, **content** (label, properties)
 - via grouping key functions: $f(v/e) \rightarrow$ key
- get the grouping result “real-time” after graph update >>> again a graph stream
Applications for graph stream grouping

- **Pre-processing** for graph stream systems (ETL)
 - e.g., before PageRank, group graph stream on city attribute of users
- **Post-processing** after a applied graph stream analysis
 - e.g., after community algorithm, group elements with the same cluster id
- **Understanding** the graph stream (and its evolution)
 - Which vertex/edge types exist in the stream?
 - How frequent the different types arrive?
 - How vertices of different characteristics are connected with edges of certain characteristics?
- **Reveal hidden information** and get instantly notified
 - aggregation of attributes -> deeper insights
 - e.g., how an average value changes over time
 - notification by defining thresholds
Graph Stream by example
Running example - Graph Schemas

A

Station
- id: int
- name: string
- bikes: int
- lat: float
- long: float

Trip
- id: int
- user_id: int
- user_type: string
- bike_id: int
- from: datetime
- to: datetime
- duration: int

B

Station
- id: int
- name: string
- bikes: int
- lat: float
- long: float

Bike
- id: int

User
- id: int
- name: string
- gender: int
- type: string

Trip
- id: int
- from: datetime
- to: datetime
- duration: int

byBike

byUser

started

ended
Running example - Graph Stream

A

B

time
Example 1 – Zoomed out (Schema A)

Input stream

Grouping config
- W: 10m
- VGK: (v → 1)
- EGK: (e → 1)
- VAgg: count()
- EAgg: count()

Empty label count:
- w1: 42
- w2: 188
- Total: 38

Total:
- 38 + 42 + 242 + 188 = 410
Example 1 – Zoomed out (Schema B)

Input stream

Grouping config
- W: 10m
- VGK: (v → 1)
- EGK: (e → 1)
- VAgg: count()
- EAgg: count()

emptylabel count : 124
emptylabel count : 221
emptylabel count : 145
emptylabel count : 312

w1
w2
Example 2 – Graph Stream Schema (A)

Grouping config
- **W**: 10m
- **VGK**: $(v \rightarrow \text{label}(v))$
- **EGK**: $(e \rightarrow \text{label}(e))$
- **VAgg**: count()
- **EAgg**: count()

Input stream

Station count: 38
Station count: 42

Trip count: 242
Trip count: 188

w1

w2
Example 2 – Graph Stream Schema (B)

Grouping config

- **W**: 10m
- **VGK**: $(v \rightarrow \text{label}(v))$
- **EGK**: $(e \rightarrow \text{label}(e))$
- **VAgg**: count()
- **EAgg**: count()

Input stream

- Station count: 64
- Bike count: 22
- Trip count: 26
- User count: 22
- User started count: 26
- User ended count: 26
- Bike byBike count: 22
- Bike byUser count: 22
- Trip started count: 26
Example 3 – Schema with aggregates (A)

Input stream

Grouping config

W: 10m
VGK: (v → label(v))
EGK: (e → label(e))
VAgg: avg(v.bikes)
EAgg: min(e.duration)
 max(e.duration)
 avg(e.duration)

Station
avg_bikes : 52.5

Station
avg_bikes : 22

Station avg_bikes : 52.5

Station avg_bikes : 22

w1

w2

trip
min_duration : 62
max_duration : 21,000
avg_duration : 3,520.5

trip
min_duration : 120
max_duration : 12,420
avg_duration : 3,024.5
Example 4 – Advanced Grouping (A)

Input stream

Grouping config

<table>
<thead>
<tr>
<th>W:</th>
<th>10m</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGK:</td>
<td>(v \rightarrow \text{label}(v))</td>
</tr>
<tr>
<td></td>
<td>(v \rightarrow \text{getDistrict}(v.\text{lat},v.\text{long}))</td>
</tr>
<tr>
<td>EGK:</td>
<td>(e \rightarrow \text{label}(e))</td>
</tr>
<tr>
<td></td>
<td>(e \rightarrow e.\text{user_type})</td>
</tr>
<tr>
<td>VAgg:</td>
<td>(\text{avg}(v.\text{lat}),\text{avg}(v.\text{long}))</td>
</tr>
<tr>
<td>EAgg:</td>
<td>(\text{count()})</td>
</tr>
<tr>
<td></td>
<td>(\text{min}(e.\text{duration}))</td>
</tr>
<tr>
<td></td>
<td>(\text{max}(e.\text{duration}))</td>
</tr>
<tr>
<td></td>
<td>(\text{avg}(e.\text{duration}))</td>
</tr>
</tbody>
</table>

Station

- **Station**
 - **district**: 2
 - **avg_lat**: 50.82
 - **avg_long**: 4.4

- **Station**
 - **district**: 1
 - **avg_lat**: 50.813
 - **avg_long**: 4.382

- **Station**
 - **district**: 3
 - **avg_lat**: 50.83
 - **avg_long**: 4.30

trip

- **user_type**: subscriber
- **count**: 25
- **min_duration**: 62
- **max_duration**: 6,421
- **avg_duration**: 2,520

- **trip**
 - **user_type**: customer
 - **count**: 32
 - **min_duration**: 122
 - **max_duration**: 5,420
 - **avg_duration**: 1,520
Example 5 – Zoomed In (B)

Grouping config
- **W:** 60m
- **VGK:** \((v \rightarrow \text{label}(v))\)
 - \((v \rightarrow v.\text{id})\)
- **EGK:** \((e \rightarrow \text{label}(e))\)
 - \((e \rightarrow e.\text{id})\)
- **VAgg:** -
- **EAgg:** -
Implementation challenges

ONE DOES NOT SIMPLY

GROUP A GRAPH STREAM
Implementation challenges

- Find an optimal **graph representation** in the streaming model
 - triple stream, vertex- and edge streams, adjacency lists/arrays
- Ensure **chronological order** after each step in the processing pipeline
 - use watermarks to prevent out-of-order events
- Ensure **scalability** of the pipeline parts (low communication overhead)
- Ensure a **finite** and minimized internal **state** of each processing step
 - e.g., join needs temporal predicate to clean up state
- Low latency / high throughput / high scalability (scale in/out)
Grouping algorithm overview

Operator encapsulation

Input mapping
- Stream input
- Extract triples
- Time + watermark assign
- Split V/E

Vertex deduplication
- $V \rightarrow V'$
- $\{V_{id}, V_{sid}, V_{u}\}$

V grouping
- $w \rightarrow G_1 \rightarrow V'$
- $w \rightarrow G_2 \rightarrow V''$
- $V'' \rightarrow V^s$

Output mapping
- $V^s \rightarrow V^s$

GS
- Edge enrichment
- $E \rightarrow E'$

GS'
- E grouping
- $E \rightarrow E''$
- $E'' \rightarrow E^s$

E grouping
- $w \rightarrow G_3 \rightarrow E''$
- $e' \rightarrow E^s$

Input mapping
- Stream input
- Extract triples
- Time + watermark assign
- Split V/E

Flink

Department of Computer Science | Database Group
Exemplified operator call

```java
// Init the stream environment
final StreamExecEnvironment env = StreamExecEnvironment.createLocalEnv();
// Create the triple stream from a csv file
DataStream<StreamTriple> citiBikeStream = createInputFromCsv(env);
// Init the StreamGraph - our internal representation of a graph stream
StreamGraph sg = StreamGraph.fromFlinkStream(citiBikeStream, new Config(env));
// Configure and build the grouping operator
GraphStreamGrouping groupingOperator = new TableGroupingBase.GroupingBuilder()
    .setWindowSize(15, WindowConfig.TimeUnit.DAYS)
    .addVertexGroupingKey(":label")
    .addEdgeGroupingKey(":label")
    .addVertexAggregateFunction(new Count())
    .addEdgeAggregateFunction(new AvgProperty("tripduration")).build();

// Execute the grouping and overwrite the input stream with the grouping result
streamGraph = groupingOperator.execute(streamGraph);
// Print the result stream to console
streamGraph.printVertices();
// Trigger the workflow execution
env.execute();
```
Current state and future work

• prototypical implementation using Apache Flink’s Table API at 90%
• bug at the Flink planner not fixed yet -> workaround via SQL API
 • https://issues.apache.org/jira/browse/FLINK-22530
• evaluation planned
 • latency, throughput, scalability, different grouping setups
 • on real-world and synthetic graph streams
• user-defined key and aggregate functions
That's all folks!

Graph Stream Zoomer >> https://github.com/dbs-leipzig/graph-stream-zoomer
Gradoop >> https://github.com/dbs-leipzig/gradoop
Temporal Graph Explorer >> https://github.com/dbs-leipzig/temporal_graph_explorer