
Link-time Call Graph Analysis to
facilitate user-guided program
instrumentation

Tim Heldmann1 and Sebastian Kreutzer2, Scientific Computing, TU Darmstadt
1tim.heldmann@tu-darmstadt.de 2sebastian.kreutzer@tu-darmstadt.de

Abstract
Code instrumentation is the primary means for extracting fine-grained performance data from programs. However, special
care has to be taken to with regard to overhead management, as a full instrumentation can increase the runtime by orders
of magnitude. Careful selection of the instrumentation configuration (IC), typically via filter lists, is therefore crucial to retain
the performance characteristics of the original application. In order to give the user better control of what is measured, we
have developed CaPI [1], an open-source tool for the creation of low-overhead, user-defined ICs. CaPI relies on a statically
constructed whole-program call-graph as its central data structure, enabling the user to select functions based on the
context they are called in, in addition to function-level metrics. Currently, this call-graph is generated externally by tools
running on the source level [4]. This can be cumbersome, especially when targeting large-scale scientific software [2].
To mitigate this issue, we are developing an approach that runs the analysis on the LLVM intermediate representation
during link-time optimization [3]. Running during link-time also allows us to embed the result into the binary, improving the
workflow and usability of CaPI. In this talk we will discuss the advantages and shortcomings of link time generated call
graphs compared to source level generated call graphs, and show how statically generated information can be augmented
dynamically at runtime.

Content outline
1. Workflow of the CaPI instrumentation selection tool

2. Usability issues occurring with large-scale target applications

3. Link-Time idiosyncrasies

a) Information availability at source vs link time

b) How to regenerate missing information

4. Embedding knowledge into the binary

5. Requesting knowledge from binaries

References
[1] https://github.com/tudasc/CaPI

[2] Sebastian Kreutzer, Christian Iwainsky, Jan-Patrick Lehr, Christian Bischof, "Compiler-assisted Instrumentation Selection for
Large-scale C++ Codes", C3PO’22 Workshop - Third Workshop on Compiler-Assisted Correctness Checking and Performance
Optimization for HPC, Jun 2022, Hamburg, Germany (to appear)

[3] Sebastian Kreutzer, "Using Link-Time Call Graph Embedding to Streamline Compiler-Assisted Instrumentation Selection", Talk at
European LLVM Developers’ Meeting 2022, London, UK, https://llvm.org/devmtg/2022-05/

[4] Jan-Patrick Lehr, Alexander Hück, Yannic Fischler, and Christian Bischof. 2020. MetaCG: annotated call-graphs to facilitate whole-
programanalysis. In Proceedings of the 11th ACMSIGPLAN InternationalWorkshop onTools for Automatic ProgramAnalysis (TAPAS
2020). Association for Computing Machinery, New York, NY, USA, 3–9. https://doi.org/10.1145/3427764.3428320

https://github.com/tudasc/CaPI
https://llvm.org/devmtg/2022-05/
https://doi.org/10.1145/3427764.3428320

