
© 2023 Arm

Peter Smith

February 2023

Open Source C/C++
embedded toolchains
using LLVM

FOSDEM 2023

© 2023 Arm

What makes an
embedded toolchain?

3 © 2023 Arm

Hosted vs Embedded toolchains

Hosted

We know what OS programs will run on
• Can depend OS syscalls to implement library

functions.

Toolchain is often run on the OS by the user.

Platform will often provide the C/C++ libraries
rather than the toolchain.

Platform will sometimes provide the linker and
assembler.

Typically all of the standard library will be
available.

Target a platform interface rather than the
specific hardware running on a device.

Embedded toolchains often freestanding

No Assumption of an OS
• C-library may implement part of an OS.

Subset of standard library available
• For example no thread support and no high-

resolution timers.

Static linking only.

Target specific hardware running on the end
device.
• Can ship with many binary library variants.

Toolchain is almost never run on the embedded
device
• Cross-compilation.

© 2023 Arm

Why do we want to use
LLVM for an embedded
toolchain?

5 © 2023 Arm

LLVM project advantages

Take advantage of the amount of runtime configuration offered by clang.
• Clang can be both a hosted native compiler and a freestanding cross-compiler for many targets.
• Can provide an Arm and AArch64 toolchain in a single package.

Code-generation can be more mature than GCC for certain targets
• Armv8.1-M M-profile Vector Extension (MVE) as included with Cortex-M55.
• Armv8.1-M Pointer Authentication and Branch Target Identification.

Take advantage of clang/llvm features such as CFI and sanitizers.

Familiarity with clang and llvm ecosystem.

Diversity of implementation
• Compilers have different warnings and find bugs.

6 © 2023 Arm

Aside: Using LLVM sanitizers in embedded systems

Code-generation is not usually a problem, however there are dependencies on the
sanitizer runtime.

Some of the sanitizers have an option for a minimal or no runtime
• Undefined behavior Sanitizer UBSAN
• Control Flow Integrity Sanitizer (CFI), requires LTO.
• Kernel Control Flow Integrity Sanitizer (KCFI)

Sanitizer uses an undefined instruction to force a trap, or call out to a user-defined
function.
• -fsanitize=undefined -fsanitize-trap=undefined

7 © 2023 Arm

Undefined Behavior Sanitizer UBSAN
Can be run with traps-only or minimal runtime (needs a trivial implementation)

int mul(int x, int y) {

return x * y;

}

C Code

mul:

smull r0, r1, r0, r1

cmp.w r1, r0, asr #31

it eq

bxeq lr

.inst.n 0xdefe // undef

mul:

push {r4, lr}

smull r4, r0, r0, r1

cmp.w r0, r4, asr #31

bne .LBB0_2

mov r0, r4

pop {r4, pc}

.LBB0_2:

bl
__ubsan_handle_mul_overflow_minimal

mov r0, r4

pop {r4, pc}

-fsanitze=undefined –
fsanitize-trap=undefined

-fsanitze=undefined –
fsanitize-minimal-runtime

8 © 2023 Arm

Kernel Control Flow Integrity KFCI

A simplified form of the CFI Sanitizer that does not require LTO.
• -fsanitize=kcfi

Functions are given a signature that can be checked when calling via a function pointer
• Trap if signatures do not match.

typedef int Fptr(void);

int function(void) {

return 0;

}

int call(Fptr* fp) {

return fp();

}

.long 0x36b1c5a6 // Signature

function:

.fnstart

movs r0, #0

bx lr

call:

ldr r1, [r0, #-4] // load sig from ptr

movw r2, #0xc5a6 // expected sig

movt r2, #0x36b1

cmp r1, r2

bne .LBB1_2

bx r0

.LBB1_2:

.inst.n 0xdefe // Undef

© 2023 Arm

Components of an
embedded toolchain

10 © 2023 Arm

llvm-project nearly there, but missing a C-library

LLVM Component GNU embedded equivalent Description

clang, clang++ gcc, g++ Compiler

clang integrated assembler as Assembler

ld.lld ld.bfd, ld.gold Linker

llvm-objdump, llvm-readelf, … objdump, readelf, … Binutils

compiler-rt libgcc Compiler runtime library

libunwind libgcc Unwinder

libc++abi libsupc++.a C++ ABI library

libc++ libstdc++ C++ standard library

libc [*] newlib [**] C library

• [*] LLVM libc isn’t yet suitable for use in embedded systems.

• [**] Newlib isn’t part of the GNU project, but there are hooks in the GCC configure scripts for
building a toolchain.

11 © 2023 Arm

Building an LLVM toolchain

Not an easy as it should be
• Building the tools is not difficult.
• Cross-compiling the runtime libraries for all supported architecture variants is a bigger challenge.

Arm has an open-source recipe for building an LLVM embedded toolchain using the
picolibc C-library at https://github.com/ARM-software/LLVM-embedded-toolchain-for-
Arm
• Primarily build-scripts for Linux and Windows (using mingw).
• Binaries available for corresponding to LLVM 13, 14 and 15 releases.
• Supports M-profile architectures along with experimental AArch64 support.
• Builds with CMake and meson (for Picolibc).
• Approach likely to be adaptable for other Targets that are supported by LLVM and Picolibc.

https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm

12 © 2023 Arm

Usability compared to a GNU Toolchain

Multilib support
• Derive a library path based on input command line options such as march and mcpu.

Specs file
• GNU Toolchain uses these to select semihosting and newlib-nano.
• --specs=nano.specs --specs=rdimon.specs

LLVM Embedded Toolchain for Arm uses clang config files
• Need more of these than equivalent specs files.
• --config armv6m_soft_nofp_semihost

Long tail of small incompatibilities from existing open source projects:
• Options only supported by GNU tools.
• GNU as vs LLVM integrated assembler.
• Command line defaults for some options different.
• LLD linker script differences.

© 2023 Arm

Clang Bare Metal Driver

14 © 2023 Arm

Clang Drivers

Clang driver is responsible for parsing command line arguments and launching sub-
processes to perform the desired actions.
• clang -cc1 for C/C++ compiler.
• clang-cc1as for integrated assembler.
• lld for linking.

Clang driver instantiates ToolChain classes to handle specific use-cases.

Target-triple <Arch><Sub-arch><Vendor><OS><Environment> selects ToolChain.

clang

clang –cc1

lld

clang –target=aarch64-Linux-gnu hello.c clang-15.0 -cc1 -triple aarch64-Linux-gnu
-target-cpu=“generic” -target-feature +neon
-Isystem /path/to/includes
…

ld.lld –m aarch64Linux
-dynamiclinker /lib/ld-linux-aarch64.so
-L /path/to/system/libraries
…

15 © 2023 Arm

Clang driver selection per target

BareMetal

Generic_GCC

lib/Driver/Toolchains

Linux

Driver.cpp:getToolChain

--target=arm-none-eabi

--target=arm-linux-gnu

--target=x86_64-unknown

Requires:
(toolchains::BareMetal::handlesTarget(Target))

16 © 2023 Arm

Clang bare metal driver

Defaults to LLD for linking.

Defaults to the LLVM runtimes
• Compiler-rt, libc++, libc++abi, libunwind.

Uses the clang integrated assembler.

Relies on the user to have the right include and library path for the C-library.

Has some hard-coded RISC-V multilib support.

© 2023 Arm

Ongoing work and
community involvement

18 © 2023 Arm

Data Driven Multilib support

Multilib support in Clang is currently hard-coded
• Not possible for every embedded toolchain to have an upstream description.

GCC has a configure time selection that maps command-line options to directories.

RFC https://discourse.llvm.org/t/rfc-multilib/67494

Different mechanism than GCC as clang driver has more information on target
capabilities
• Still in active development. Feedback on the RFC welcome and in any patches linked from it welcome.

https://discourse.llvm.org/t/rfc-multilib/67494

19 © 2023 Arm

Future work

Upstream buildbots for runtimes
• compiler-rt, libc++, libc++abi, libunwind.

Making LTO more useable with Linker Scripts
• Link-Time Attributes for LTO: https://www.youtube.com/watch?v=OkGsMrVd2y8

Prevent some cross-module optimizations between different memory regions.
Allow for easier placement of sections.

Improving code-coverage
• MC/DC: Enabling easy-to-use safety-critical code coverage analysis with LLVM

https://www.youtube.com/watch?v=RmX_8GxxTbs
Not strictly embedded, but a lot of safety-critical systems are embedded systems.

• Runtime suitable for embedded toolchain.

LLVM libc
• Focussed on hosted use case for now, but hopes to have scalable implementations suitable for

embedded systems.

https://www.youtube.com/watch?v=OkGsMrVd2y8
https://www.youtube.com/watch?v=RmX_8GxxTbs

20 © 2023 Arm

Arm specific work

Big endian for AArch32
• https://reviews.llvm.org/D140201
• https://reviews.llvm.org/D140202
• https://reviews.llvm.org/D140203

Cortex-M Security Extensions (CMSE) Support
• https://reviews.llvm.org/D139092

https://reviews.llvm.org/D140201
https://reviews.llvm.org/D140202
https://reviews.llvm.org/D140203
https://reviews.llvm.org/D139092

21 © 2023 Arm

How can I contribute?

LLVM Embedded Toolchains Working Group sync up
• Every 4 weeks on a Thursday at 17:00 GMT.
• Calendar link at https://llvm.org/docs/GettingInvolved.html#online-sync-ups
• Agenda and meeting notes available at https://discourse.llvm.org/t/llvm-embedded-toolchains-

working-group-sync-up/63270/19

Discourse at https://discourse.llvm.org/

Bug reports
• LLVM bugs https://github.com/llvm/llvm-project/issues
• LLVM embedded toolchain for Arm bugs https://github.com/ARM-software/LLVM-embedded-

toolchain-for-Arm/issues

Round tables and panels at LLVM developer meetings.

https://llvm.org/docs/GettingInvolved.html#online-sync-ups
https://discourse.llvm.org/t/llvm-embedded-toolchains-working-group-sync-up/63270/19
https://discourse.llvm.org/t/llvm-embedded-toolchains-working-group-sync-up/63270/19
https://discourse.llvm.org/
https://github.com/llvm/llvm-project/issues
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm/issues
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm/issues

© 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

	Slide 1: Open Source C/C++ embedded toolchains using LLVM
	Slide 2: What makes an embedded toolchain?
	Slide 3: Hosted vs Embedded toolchains
	Slide 4: Why do we want to use LLVM for an embedded toolchain?
	Slide 5: LLVM project advantages
	Slide 6: Aside: Using LLVM sanitizers in embedded systems
	Slide 7: Undefined Behavior Sanitizer UBSAN
	Slide 8: Kernel Control Flow Integrity KFCI
	Slide 9: Components of an embedded toolchain
	Slide 10: llvm-project nearly there, but missing a C-library
	Slide 11: Building an LLVM toolchain
	Slide 12: Usability compared to a GNU Toolchain
	Slide 13: Clang Bare Metal Driver
	Slide 14: Clang Drivers
	Slide 15: Clang driver selection per target
	Slide 16: Clang bare metal driver
	Slide 17: Ongoing work and community involvement
	Slide 18: Data Driven Multilib support
	Slide 19: Future work
	Slide 20: Arm specific work
	Slide 21: How can I contribute?
	Slide 22

