
Mainline Linux on recent 
Qualcomm SoCs: Fairphone 4
A look into the work of getting a modern Qualcomm SoC into 

mainline Linux.

Luca Weiss - FOSDEM 2023



Who am I?

● Luca Weiss (z3ntu)
● Mainlining phones since 2017
● postmarketOS core team member
● Android Platform Engineer at Fairphone



Background

● Qualcomm has many SoCs
● Many are already supported (launched 2018 and later)

○ sm8550, sm8450, sm8350, sm8250, sm8150, sm7225, sm6375, sm6350, sm6125, sm6115, 
sm4250, sdm850, sdm845, sdm670, sdm632

● Still many more are not supported
○ High-end is quickly supported thanks to Linaro
○ Mid- and low-end not

● You can do it yourself!



Fairphone 4 (SM7225)

● Launched in September 2021 (1 year, 4 months ago)
● Stock kernel: msm-4.19
● Supported functionality as of February 2023 (not everything upstream)

○ Basics such as serial console, power & volume buttons, regulators, RTC
○ USB (nearly type-C functionality with role switching)
○ Internal storage & SD card
○ Display (with backlight control) & Touchscreen & GPU
○ WiFi
○ Remoteprocs but not quite modem and mobile data 
○ Vibration motor, flash/torch LED, camera I2C bus
○ + lots of plumbing



What isn’t working yet?

● Some parts work-in-progress with some success
○ Speaker audio (actually kind of working)
○ Bluetooth (some parts worked)

● Other parts don’t work at all
○ Modem…
○ Microphones
○ Camera subsystem (CAMSS) & ToF sensor
○ Video encoding/decoding (VENUS)
○ NFC
○ Fuel gauge & charging
○ Displayport over USB-C



New SoC - first boot

● Need to figure out bootloader, esp. regarding dtbo
○ “fastboot erase dtbo” probably works
○ Serial console is helpful if you can

● First boot after some hours
○ Earlycon (serial) & display (simple-framebuffer)
○ ~180 lines of SoC .dtsi and ~40 lines of device .dts
○ No driver changes necessary!

● Check out https://mainlining.dev/ from Iskren Chernev
○ Very nice blog/guide for early porting!

https://mainlining.dev/


New SoC - going further

● Clock driver
○ Take driver from downstream kernel and adjust
○ Add power domains (GDSCs)

● More clocks (rpmh)
● Add more to dts (smem, tcsr_mutex, apss_shared, aoss_qmp)
● Get USB up for better debugging
● Pinctrl driver

○ Also take from downstream
● Add regulators



Things that go wrong

● IOMMU
○ Bootloader initializes some mapping
○ Downstream keeps them and configures some
○ Mainline doesn’t keep bootloader mappings! (but you can dump them if you need)

● Devices like to reboot when something’s wrong
○ Clock isn’t on -> reboot
○ Writing to wrong register -> reboot
○ IOMMU wrong -> reboot

● Debug
○ Print source location to kernel log (framebuffer) and sleep
○ printk(KERN_ERR “%s:%d\n”, __func__, __LINE__);
○ Sprinkle it everywhere!
○ Or build as module



To remember

● Commit your progress often
○ When you get something to work -> commit!
○ Clean up afterwards, you can squash it later

● Send patches upstream!
○ Don’t let your progress rot in your git repo
○ Start upstreaming patches early
○ Patches take a while to trickle upstream
○ git send-email is not difficult



Thanks for listening!


