OPEN
SOURCE
SECURITY

'@ecoswﬁ

Rust-GCC

o

Arthur Cohen

<arthur.cohen@embecosm.com>

Summary

e Whatis GCC?

e Whatis Rust GCC?
e How do we do that?
o Our parser

o Qur AST
o OurHIR
o Our “backend”

o All the extra fun stuff we handle
e Workflow
o Community
e What's coming: next steps, target code, target goals...

@Ecosm®

Whatis GCC?

GNU Compiler Collection
Old!
Written in C++
Multiples languages in one
Not usable as a library

o libgccjit

o Orin-tree

@Ecosm®

What is Rust GCC?

e Full Implementation of Rust on top of GNU Toolchain
o Project originally started in 2014, revived in 2019
m Progress stalled with the frequency of language changes
m Receives contributions from many GCC and non GCC developers
o Thanks to Open Source Security, inc and Embecosm

@Ecosm®

Motivations of Rust GCC

e Upstream with mainline GCC
e Alternative implementation of Rust
o Help drawing out Rust specification
e Reuses the GNU toolchain (ld, as, gdb)
e Reusing official Rust libcore, libstd, libproc
e Reuse existing GCC improvements
o LTO, CFl, analyzers, security plugins...
e Drive adoption of Rust through backporting
e Backend support for more systems
e https:/github.com/Rust-GCC/gccrs/wiki/Frequently-Asked-Questions

@Ecosm®

https://github.com/Rust-GCC/gccrs/wiki/Frequently-Asked-Questions

Current status

Milestone
Data Structures 1 - Core
Control Flow 1 - Core
Data Structures 2 - Generics
Data Structures 3 - Traits
Control Flow 2 - Pattern Matching
Macros and cfg expansion
Imports and Visibility
Const Generics
Initial upstream patches

Upstream initial patchset

Last Week
100%
100%
100%
100%
100%
100%
100%
100%
100%

100%

This Week
100%
100%
100%
100%
100%
100%
100%
100%
100%

100%

Delta

Start Date
30th Nov 2020
28th Jan 2021
11th Feb 2021
20th May 2021
20th Sept 2021
1st Dec 2021
29th Mar 2022
30th May 2022
10th Oct 2022

13th Nov 2022

Completion Date
27th Jan 2021
10th Feb 2021
14th May 2021
17th Sept 2021
9th Dec 2021
31st Mar 2022
13th Jul 2022
10th Oct 2022
13th Nov 2022

13th Dec 2022

Target
29th Jan 2021
26th Feb 2021
28th May 2021
27th Aug 2021
29th Nov 2021
28th Mar 2022
27th May 2022
17th Oct 2022
13th Nov 2022

19th Dec 2022

@Ecosm®

Current status

Upstream initial patchset
Update GCC’s master branch
Final set of upstream patches
Intrinsics and builtins

Borrow checking

Const Generics 2

Rust-for-Linux compilation

100%

0%

31%

18%

0%

0%

0%

100%

39%

38%

18%

0%

0%

0%

+39

+7%

13th Nov 2022
01st Jan 2023
16th Nov 2022
6th Sept 2022
TBD
TBD

BD

13th Dec 2022

19th Dec 2022
03rd Mar 2023
30th Apr 2023
TBD
TBD
TBD

TBD

@Ecosm®

Current status

Const generics

Intrinsics

Working on Borrow-checking

Working towards running the rustc test-suite

Working on targeting an older version of libcore (1.49)

@Ecosm®

Pipeline Overview

Parsing

Expansion

Name resolution

Lowering to HIR

Type Checking

Linting or error verification

Lowering to tree (-> GCC middle-end)

@Ecosm®

Frontend Representations

e AST (Abstract Syntax Tree)
o Raw AST (Structured C++ class hierarchy)
e HIR (high level IR)
o Desugared AST
m remove distinction between functions/methods
m macros don't exist anymore

m Mmuch much more....
e (Generic (GCCIR)

@Ecosm®

Macro Expansion

e Macro arguments are typed

o expr, stmt, path, pat, vis...
e Repetitions
e Mathematical logic

o Kleene Operators

m ox 7+
o Follow-set Ambiguity Restrictions
o That we need to implement!

@Ecosm®

Macro Expansion

macro_rules! add {

(Se:expr) => { Se };

(Se:expr, S(Ses:expr),®) => { Se + add! (8(Ses),*) };
}

add! (1); // 1

add! (1, 2, 4); // 7
add! (1, add! (2, 3), five(), b, 2 + 4);

@Ecosm®

Macro Expansion

macro_rules! tuplomatron {

(Blse:exprinX ; Blsfexpr)a®) => { (80 (se, S) D%) };

}
let tuple = tuplomatron! (1, 2, 3; 4, 5, 6); // valid
let tuple = tuplomatron! (1, 2, 3; 4, 5); // invalid

@Ecosm®

Macro Expansion

macro_rules! invalid {
(Se:expr forbidden) => {};
// Forbidden by the follow-set ambiguity restriction

(Se:expr S(,)2 S(;)* S(=>)* forbidden) => {};
// 1 2 3 4 5 (matches)

@Ecosm®

Extra HIR checks

e Privacy pass
o Privacy in Rust is very different from C++
o pub(in path), pub(super), pub(crate)..
e Unsafe
o Some actions are only allowed in unsafe contexts
m Dereferencing raw pointers, calling unsafe or extern functions, use of
mutable or extern static variables, inline assembly...

@Ecosm®

Other Rust specific shenanigans

e Macros are lazy

o No they're not
e (Code sharing between crates

o Headers like C/C++7?

o Dark ELF magic?

m AST Serializing/Deserializing

e Type system

o Extremely complex and powerful

o Never type, GATs...

o Sum types

o Not a lot of GCC-languages have that!
e Inline assembly

o Different from GCC's

o Translation required

@Ecosm®

Contributing | Reviewing | Merging | Upstreaming

@Ecosm®

Inspired from rustc’s workflow

e Github

e Zulip

e bors r+
But also...

e |RC

gcc-rust@gcc.gnu.org
e Mailing list and patches

e No matter your background, you can contribute

@Ecosm®

GCC development is hard

Email based code submitting/reviewing is difficult
GCC Changelogs are hard to write

Pushing directly to GCC’s main branch

git send-email

@Ecosm®

GCC development is hard

We submit patches/commits to GCC's mailing list for your contributions
Lots of Cl

Lots more machines building and bootstrapping gccrs

Commit format checkers

Working on a bot to post the Changelog template

@Ecosm®

GCC development is hard

e GCC development stages

o Some files cannot be edited from November to May
e We keep track of that

o Maintaining a “GCC-ready” branch

o As well as our main development branch

@Ecosm®

s it working?

e More than 50 contributors in 2022 overall
e Multiple students
o Multiple internships
e GCC developers
e Rust core team

@Ecosm®

Status | Future Work | Open Questions

@Ecosm®

When is it ready?

e Can compile Llibcore and actually works

o Implements all necessary lang items

o Unstable APIs, macros, attributes...

o Passesthe rustc 1.49 testsuite!
e Llibcore, liballoc...
e Libproc

o Powerful procedural macros

o Requires an RPC server in the front-end
e Borrow checking

o Polonius project

m Having it optional is a no go for the community

e We are part of this year's GSoC!

@Ecosm®

GSoC

e (GSoC student Faisal Abbas ported large portions of C++ constexpr evaluation
const A: 132 = 1;

const fn test(a: i32) -> 132 {
let b = A + a;
if b == 2 {
return b + 2;

kI

a
kI
const B: 132 = test(1l);
const C: 132 = test(12);

@Ecosm®

GSoC

HIR debugging dump

Unicode support

Metadata exports

Better user error handling + Rust error codes

@Ecosm®

Tooling

e Testing project
o Tries compiling various projects using gccrs
m blake3 cryptography library
m Llibcore 149
m Allthe valid cases from the rustc testsuite
e in#[no_std] mode
e in#[no_core] mode
o Eventually add RfL to it!
Testsuite generator
Website
Report generator and tooling
cargo-gccrs
Web dashboard

@Ecosm®

Finally...

e RIiR?
o Limited to Rust 1.49 for bootstrapping purposes
m gccrs “1.0" will be able to compile gccrs “2.0"
o Still a ways off ;)
e The goalis NOT to break the ecosystem

rustl: able to compile Rus

COMPILER DO NOT USE

@Ecosm®

Community

Links

Github: https://rust-gcc.github.io/

Reports: https:/github.com/Rust-GCC/Reporting
Zulip: https://gcc-rust.zulipchat.com/

IRC: irc.oftc.net #gccrust
https:/gcc.gnu.org/mailman/listinfo/gcc-rust

@Ecosm®

https://rust-gcc.github.io/
https://github.com/Rust-GCC/Reporting
https://gcc-rust.zulipchat.com/
https://gcc.gnu.org/mailman/listinfo/gcc-rust

Get Involved

e (Goalis to make working on compilers fun
o Lotsof good-first-pr issues to work through
m Refactoring work
m Bugs
o Lots of scope to make your mark on the compiler
e Google Summer of Code 2021 and 2022
e Status reporting
o Weekly and Monthly
o Shout out to contributors
o Open and transparent
e Monthly Community Call and Weekly Syncup
o Inour calendar and Zulip
o Open to everyone who is interested
o Hosted on |Jitsi

@Ecosm®

OPEN
SOURCE ORACLE

SECURITY

'@Ecosw

Questions?

github.com/Rust-GCC/gccrs/
gcc-rust.zulipchat.com/

irc.oftc.net #gccrust

k

