
Rust-GCC Arthur Cohen
<arthur.cohen@embecosm.com>

Summary

● What is GCC?
● What is Rust GCC?
● How do we do that?

○ Our parser
○ Our AST
○ Our HIR
○ Our “backend”
○ All the extra fun stuff we handle

● Workflow
● Community
● What’s coming: next steps, target code, target goals…

What is GCC?

● GNU Compiler Collection
● Old!
● Written in C++
● Multiples languages in one
● Not usable as a library

○ libgccjit
○ Or in-tree

What is Rust GCC?

● Full Implementation of Rust on top of GNU Toolchain
○ Project originally started in 2014, revived in 2019

■ Progress stalled with the frequency of language changes
■ Receives contributions from many GCC and non GCC developers

○ Thanks to Open Source Security, inc and Embecosm

Motivations of Rust GCC

● Upstream with mainline GCC
● Alternative implementation of Rust

○ Help drawing out Rust specification
● Reuses the GNU toolchain (ld, as, gdb)
● Reusing official Rust libcore, libstd, libproc
● Reuse existing GCC improvements

○ LTO, CFI, analyzers, security plugins…
● Drive adoption of Rust through backporting
● Backend support for more systems
● https://github.com/Rust-GCC/gccrs/wiki/Frequently-Asked-Questions

https://github.com/Rust-GCC/gccrs/wiki/Frequently-Asked-Questions

Current status

Current status

Current status

● Const generics
● Intrinsics
● Working on Borrow-checking
● Working towards running the rustc test-suite
● Working on targeting an older version of libcore (1.49)

Pipeline Overview

● Parsing
● Expansion
● Name resolution
● Lowering to HIR
● Type Checking
● Linting or error verification
● Lowering to tree (-> GCC middle-end)

Frontend Representations

● AST (Abstract Syntax Tree)
○ Raw AST (Structured C++ class hierarchy)

● HIR (high level IR)
○ Desugared AST

■ remove distinction between functions/methods
■ macros don’t exist anymore
■ much much more….

● Generic (GCC IR)

Macro Expansion

● Macro arguments are typed
○ expr, stmt, path, pat, vis...

● Repetitions
● Mathematical logic

○ Kleene Operators
■ * ? +

○ Follow-set Ambiguity Restrictions
○ That we need to implement!

Macro Expansion

macro_rules! add {
 ($e:expr) => { $e };
 ($e:expr, $($es:expr),*) => { $e + add!($($es),*) };
}

add!(1); // 1
add!(1, 2, 4); // 7
add!(1, add!(2, 3), five(), b, 2 + 4);

Macro Expansion

macro_rules! tuplomatron {
 ($($e:expr),* ; $($f:expr),*) => { ($(($e, $f)),*) };
}

let tuple = tuplomatron!(1, 2, 3; 4, 5, 6); // valid
let tuple = tuplomatron!(1, 2, 3; 4, 5); // invalid

Macro Expansion

macro_rules! invalid {
 ($e:expr forbidden) => {};
 // Forbidden by the follow-set ambiguity restriction

 ($e:expr $(,)? $(;)* $(=>)* forbidden) => {};
 // 1 2 3 4 5 (matches)
}

Extra HIR checks

● Privacy pass
○ Privacy in Rust is very different from C++
○ pub(in path), pub(super), pub(crate)…

● Unsafe
○ Some actions are only allowed in unsafe contexts

■ Dereferencing raw pointers, calling unsafe or extern functions, use of
mutable or extern static variables, inline assembly…

Other Rust specific shenanigans

● Macros are lazy
○ No they’re not

● Code sharing between crates
○ Headers like C/C++?
○ Dark ELF magic?

■ AST Serializing/Deserializing
● Type system

○ Extremely complex and powerful
○ Never type, GATs…
○ Sum types
○ Not a lot of GCC-languages have that!

● Inline assembly
○ Different from GCC’s
○ Translation required

Contributing | Reviewing | Merging | Upstreaming

Inspired from rustc’s workflow

● Github
● Zulip
● bors r+

But also…

● IRC
● gcc-rust@gcc.gnu.org
● Mailing list and patches

● No matter your background, you can contribute

GCC development is hard

● Email based code submitting/reviewing is difficult
● GCC Changelogs are hard to write
● Pushing directly to GCC’s main branch
● git send-email

GCC development is hard

● We submit patches/commits to GCC’s mailing list for your contributions
● Lots of CI
● Lots more machines building and bootstrapping gccrs
● Commit format checkers
● Working on a bot to post the Changelog template

GCC development is hard

● GCC development stages
○ Some files cannot be edited from November to May

● We keep track of that
○ Maintaining a “GCC-ready” branch
○ As well as our main development branch

Is it working?

● More than 50 contributors in 2022 overall
● Multiple students

○ Multiple internships
● GCC developers
● Rust core team

Status | Future Work | Open Questions

When is it ready?

● Can compile libcore and actually works
○ Implements all necessary lang items
○ Unstable APIs, macros, attributes…
○ Passes the rustc 1.49 testsuite!

● libcore, liballoc...
● libproc

○ Powerful procedural macros
○ Requires an RPC server in the front-end

● Borrow checking
○ Polonius project

■ Having it optional is a no go for the community
● We are part of this year’s GSoC!

GSoC

● GSoC student Faisal Abbas ported large portions of C++ constexpr evaluation

const A: i32 = 1;

const fn test(a: i32) -> i32 {
 let b = A + a;
 if b == 2 {
 return b + 2;
 }

 a
}

const B: i32 = test(1);
const C: i32 = test(12);

GSoC

● HIR debugging dump
● Unicode support
● Metadata exports
● Better user error handling + Rust error codes

Tooling

● Testing project
○ Tries compiling various projects using gccrs

■ blake3 cryptography library
■ libcore 1.49
■ All the valid cases from the rustc testsuite

● in #[no_std] mode
● in #[no_core] mode

○ Eventually add RfL to it!
● Testsuite generator
● Website
● Report generator and tooling
● cargo-gccrs
● Web dashboard

Finally…

● RiiR ?
○ Limited to Rust 1.49 for bootstrapping purposes

■ gccrs “1.0” will be able to compile gccrs “2.0”
○ Still a ways off :)

● The goal is NOT to break the ecosystem

Community

Links

● Github: https://rust-gcc.github.io/
● Reports: https://github.com/Rust-GCC/Reporting
● Zulip: https://gcc-rust.zulipchat.com/
● IRC: irc.oftc.net #gccrust
● https://gcc.gnu.org/mailman/listinfo/gcc-rust

https://rust-gcc.github.io/
https://github.com/Rust-GCC/Reporting
https://gcc-rust.zulipchat.com/
https://gcc.gnu.org/mailman/listinfo/gcc-rust

Get Involved

● Goal is to make working on compilers fun
○ Lots of good-first-pr issues to work through

■ Refactoring work
■ Bugs

○ Lots of scope to make your mark on the compiler
● Google Summer of Code 2021 and 2022
● Status reporting

○ Weekly and Monthly
○ Shout out to contributors
○ Open and transparent

● Monthly Community Call and Weekly Syncup
○ In our calendar and Zulip
○ Open to everyone who is interested
○ Hosted on Jitsi

Questions?
 github.com/Rust-GCC/gccrs/

 gcc-rust.zulipchat.com/

 irc.oftc.net #gccrust

