
libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

libGKR4GPU

Sylvain - F4GKR

Using GPU for real-time
SDR Signal processing

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

Intro & Outline

• Author : Sylvain Azarian – F4GKR
• Founder of « SDR-Technologies » , small French company around Paris

• Former staff of ONERA (Radar Dept) and Director of SONDRA Lab in Paris-Saclay Univ.

• Involved in Amateur Radio organizations (President of IARU R1)

• Outline of the talk
• Motivation

• DDC in SDR: why it does need “some” CPU cycles

• Using GPU: does it bring anything ?

• The “libgkr4gpu” : what is it like ?

• Q&A

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

Background

• The story started while working in Radar &
Signal Processing (at ONERA), when the Tegra K1
Soc was released
• Radar processing, digital beamforming generate

heavy processing needs and a « more compact »
solution were required

• I was tasked to explore GPU-based solutions

• GPU for SDR is now the « core business » of the company
funded in 2017

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

What looked promising ?

326 GIGA FLOPS for 5 WATTS !!!!!!!!!!!!
• 4 Core ARM Cortex-A15
• 192 CUDA cores
• Linux ☺

The 99€ question :
Can this bring anything to real-time continuous
signal processing ?

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

The programming model

C[1] C[2] C[N]

A[1] A[2] A[N]

B[1] B[2] B[N]

+ + +

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

Examples of CPU consuming DSP blocks

• Extracting narrow band signal from stream: DDC (Digital Down-
Converter)

• Interpolation / Decimation

• Clock recovery

• Synchronization & pattern detection

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

What do we want to achieve

« Wideband » continuous stream
Ex: 50 MHz bandwidth centered at

25 MHz Stuff

200 kHz centered at 7.100
MHz

350 kHz centered at
14.175 MHz

5 kHz centered at
5.505 MHz

Have multiple sub bands from one single input, with different specifications (bandwidth, oversampling, …)

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

How do we do this ? [for one channel]

Local oscillator

Complex
Mult Low Pass filter Decimator

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

Low-Pass Filter : the convolution

E
1

E
2

E
3

4 5 n

F
1

F
2

F
3

F
4

Filter coefficients – the « taps »

S1=E1*F1+E1*F2+E3*F3+E4*F4 S
1

S
2

S
3

S
n

Input

Filter output

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

Where is the issue ?

Low-pass filter might need a lot of taps

For example, we want a SSB output IQ stream from a 50 MHz
continuous stream
• Our signal is 3300 Hz wide, stop-band for example 6kHz
• We need at least 60 dB of attenuation for unwanted signals

𝐵𝑇 =
6000 − 3300

50 𝑀𝐻𝑧
= 0,000054

𝑁𝑡𝑎𝑝𝑠 =
60

22 ∗ 0,000054
=

60

0,001188
= 50 500 𝑡𝑎𝑝𝑠

« Harris approximation »

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

So what ????

E
1

E
2

E
3

4 5 n

F
1

.. ..
F
N

50500 coefficients

S1=E1*F1+….+E50500*F50500
S
1

Input : 50 500 values at 50 MSPS

Filter output : 1 value

We must do this for every sample… that is 50 000 000 times per second

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

What are the solutions ?

• Divide by two, decimate, divide by two, decimate, divide by two,
decimate….

N samples at BHZ

Low Pass
filter

N1 taps

N/2 samples
at

B/2

Low Pass
filter

N2 Taps

N/4 samples
at B/4

Designed with a cut at B/2

• Half-band LPF = 50% of the coefficients are … 0

• Each block deletes 50% of samples

• The number of taps is increased as the throughput is reduced : N1 < N2 < N3 …

Low Pass
filter

N3 Taps

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

But… ?

Stuff

200 kHz centered at 7.100
MHz

350 kHz centered at
14.175 MHz

5 kHz centered at
5.505 MHz

We can hardly reuse the “divide by 2 cascade”,
because the center frequency of the different
channel is different

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

Can GPU help ?

• NVIDIA Jetson Xavier NX

➢GPU with 384 cores – 16 GB
• FFT Size : 524 288 (219) : 0.31 milli secs
• FFT Size : 8 388 608 (223) : 7.15 milli secs

• NVIDIA A100 :

➢GPU with 6912 cores – 80 GB
• FFT size = 223 : 0.17 milli secs (!)
• FFT size = 230 : 23.3 milli secs

500 €

20 000 €

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

Convolution… and FFT

~ N.log2(N) multiplications
N = FFT Size

N multiplications ~ N.log2(N) multiplications

This works for 1 single block of N samples long

FFT

FFT

X

N complex values

N complex values

FFT

Input signal

Filter

Filtered signal

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

The Overlap-Save method

Source: https://thewolfsound.com/fast-convolution-fft-based-overlap-add-overlap-save-partitioned/

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

Adding output channels

Samples from SDR FFT

multiply

multiply

FFT-1

FFT-1

Decimate

Decimate

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

A nice feature from NVCC and NVIDIA devices

nvcc --default-stream per-thread

This enables the different GPU processing streams to run concurrently :

FFT

multiply

multiplyFFT-1 FFT-1Decimate Decimate

By default, kernels (CUDA code) are run sequentially…

FFT

FFT-1

multiply

Decimate

multiply FFT-1 Decimate

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

Small « issue » we need to fix

multiply FFT-1 Decimate

We want our output band « centered »

We need to frequency shift the signal…

The easiest is to do this after the decimation step : we will use less multiplications
BUT we must compensate for the aliasing (look in the code ☺)

Freq. shift

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

The « libGKR4GPU »

• Accepts « any » number of output channels (limit: GPU ram)

• Accepts « on the fly » addition, deletion of channels

• Thread safe

• No external dependency (except CUDA)

• Any channel can be retuned

• C “++” and CUDA, works ONLY with NVIDIA GPU, Desktop or Jetson
family

https://github.com/f4gkr/libgkr4gpu/

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

A quick look at the performances

lib

5 MHz wide
Center : -10 MHz

2 MHz wide
Center : +25 MHz

100 MHz Filters: 7200 Taps

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

FFT Size : 512x1024
Input: blocks of 256x1024 samples

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

Looking for speed

• Size of FFT and Filter length : depends on # of Cuda Cores

• Moving data from Host to GPU is expensive

• Gathering samples from SDR via USB through LibUSB is expensive

• The most important: the CPU is available for other tasks !

libGKR4GPU: A GPU optimized multichannel DDC Sylvain AZARIAN - F4GKR

That’s all folks

• Contact: f4gkr[at]iaru-r1.org

	Slide 1
	Slide 2: Intro & Outline
	Slide 3: Background
	Slide 4: What looked promising ?
	Slide 5: The programming model
	Slide 6: Examples of CPU consuming DSP blocks
	Slide 7: What do we want to achieve
	Slide 8: How do we do this ? [for one channel]
	Slide 9: Low-Pass Filter : the convolution
	Slide 10: Where is the issue ?
	Slide 11: So what ????
	Slide 12: What are the solutions ?
	Slide 13: But… ?
	Slide 14: Can GPU help ?
	Slide 15: Convolution… and FFT
	Slide 16: The Overlap-Save method
	Slide 17: Adding output channels
	Slide 18: A nice feature from NVCC and NVIDIA devices
	Slide 19: Small « issue » we need to fix
	Slide 20: The « libGKR4GPU »
	Slide 21: A quick look at the performances
	Slide 22
	Slide 23: Looking for speed
	Slide 24: That’s all folks

