
Fosdem 2024

Beyond passwords: secure
authentication with passkeys
Identity and Access Management
devroom

$ whoami

/passbolt
@stripthis

@passbolt@mastodon.social

passbolt,
FIDO CP-SIG

Hello, I’m Remy,

Co-founder of passbolt

What is authentication?
Asserting a user identity using something they:

know (passphrase, password, pin)
have (token, certificate, key)

are (biometric)
or do (typing pattern, gait)

Password based authentication

- Credential stuffing.

- Phishing.

- Password loss.

- Bruteforce (online)

- Bruteforce (offline, in case of leak).

~ Adversary in the middle (network)

~ Password logging.

~ User enumeration

Security issues:

+ Checking against breaches & entropy

~ User training

+ Account recovery

+ Captcha (+GDPR) / WAF / Alerts

+ “Costly” hashing mechanism (bcrypt)

+ HTTPs pinned and well configured

+ Additional client side hashing?

~ Vague error messages & constant time?

Implementation considerations:

Who has setup passkeys as a user?
As a developer?

Passkeys are passwords replacements. They
are public/private key pairs used for user
authentication using cryptographic signatures.

Passkeys are user credentials that are
discoverable (by the browser, websites, apps).

They are stored within applications or security
keys. They may be synced across devices.

What is a passkey?

Cannot be
exported

Exportable and
transferable within a

given ecosystem
(apple, google, etc.)

Credential recovery
with another device
and/or via provider Customizable

UX

Transaction
signing

Discoverable

Bound to an origin
(app, domain)

Phishing
resistant

No credential
backup, no
recovery

Device Bound Passkeys
Ex: yubikey, solokeys, etc.

Synced Passkeys
Ex. passkey on apple / google devices

Attestation
possible

App Level Passkeys
Ex: auth app for bank(s)

Custom
authenticator

Additional
signals

Consumer
(Ease of use &

privacy)

Enterprise
(Security &
auditing)

Phishing
resistance

Strong
authenticator

attestation
(MDS)

Domain
bound

Stronger user
verification
(slower UX)

Lighter touch
points (speed
optimized UX)

Conflicting requirements? More options!
The complex art of balancing the standards to cater for different audiences…

Certifications
(NIST, etc.)

Privacy
(no fingerprinting)

Authenticator
“hinting”

(AAGUID
unofficial list)

Passkey sharing /
exports

HTTPS
only

WebAuthn

Web Authentication

HTTPS

Relying Party
(RP)

The website that
wants to
authenticate you

Client

The web-browser &
client side software
(JavaScript +
Credential
Management API)

Authenticator

Proves you are you,
either on the device
(platform) or off
device (roaming).

CTAP 2.0 + proprietary
apis & monkey patching

Client to authenticator
protocol

FIDO2 Project
A joint effort between the FIDO Alliance and the W3C.

Examples:
iOS Keychain
Microsoft Hello
Yubikey
Dashlane
Etc.

Examples:
Chrome
Firefox
Safari
Etc.

Examples:
Google
Mastodon
etc.

Attestation (Registration)

When an authenticator registers a new key pair with a
service. Either first one or as an alternative for recovery.

Assertion (Login)

When a user chooses to log into a service.

Not supported: listing and deletion of passkeys. RPs are in
charge of this (potentially leading to accessibility / security
issues).

Which ceremonies are supported?

https://w3c.github.io/webauthn/#registration-ceremony
https://w3c.github.io/webauthn/#authentication-ceremony

Authenticator
(App/Device)

Client
(Browser)

Attestation
{Attestation Statement, Authenticator Data}

Relying Party
(Website)

Assert parameters
Assert crypto supported
Check existing credential
(Collect user gesture)
Generate credential
Generate signature

200 OK
PublicKeyCredentialCreationOptions:

{rp, user, challenge, pubKeyCredParams,
authenticatorSelection, attestation, etc.}

authenticatorMakeCredential(
clientDataHash, rp, user,
pubKeyCredParams, ..)

POST /webauthn/attestation/options
{username}

POST /webauthn/attestion/response
AuthenticatorAttestationResponse:
{clientDataJSON, attestationObject}

navigator.credentials.create(
PublicKeyCredentialCreationOptions)

200 OK
Set-cookie: session

Assert RP ID
Assert Key
Verify signature
etc.

Attestation ceremony
e.g. a client sends a registration request

https://www.w3.org/TR/webauthn-2/#attestation-object
https://w3c.github.io/webauthn/#authenticatorattestationresponse
https://fidoalliance.org/specs/fido-v2.2-rd-20230321/fido-client-to-authenticator-protocol-v2.2-rd-20230321.html#authenticatorMakeCredential
https://w3c.github.io/webauthn/#authenticatorattestationresponse
https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/create

Authenticator
(App/Device)

Client
(Browser)

Assertion Signature
{selectedCredential id and username,
authenticatorData, signature, ..}

Relying Party
(Website)

Assert params
Check credential exist
(Collect user gesture)
Generate signature

200 OK
PublicKeyCredentialRequestOptions:

{challenge, rpId, allowCredentials, userVerification, ..}

authenticatorGetAssertion()
{rpId, clientDataHash, ..}

POST /webauthn/assertion/options
{username}

POST /webauthn/assertion/response
AuthenticatorAssertionResponse:
{clientDataJSON, authenticatorData, signature,
userHandle}

navigator.credentials.get(
PublicKeyCredentialRequestOptions)

200 OK
Set-cookie: session

Verify sig
Assert RP ID
etc.

Assertion ceremony
e.g. authentication flow (login flow)

https://www.w3.org/TR/webauthn-2/#dictdef-publickeycredentialrequestoptions
https://fidoalliance.org/specs/fido-v2.2-rd-20230321/fido-client-to-authenticator-protocol-v2.2-rd-20230321.html#authenticatorGetAssertion
https://www.w3.org/TR/webauthn-2/#authenticatorassertionresponse
https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/get

What about account recovery?

RPs

More than one passkeys

Password

Magic Link

✓

✓

✓

Authenticators / Platforms

Another device

Recovery contact

Custom procedure

✓

~

~

Example for iCloud

“Passkeys can be recovered through iCloud keychain escrow, which is also protected against brute-force attacks,
even by Apple. [...]

To recover a keychain, a user must authenticate with their iCloud account and password and respond to an SMS
sent to their registered phone number. After they authenticate and respond, the user must enter their [lost] device
passcode. iOS, iPadOS, and macOS allow only 10 attempts to authenticate. After several failed attempts, the
record is locked and the user must call Apple Support to be granted more attempts. After the tenth failed attempt,
the escrow record is destroyed.

Optionally, a user can set up an account recovery contact [...].”

Ref. https://support.apple.com/en-gb/guide/security/sec3e341e75d/web

https://support.apple.com/guide/security/sec3e341e75d/
https://support.apple.com/en-gb/guide/security/sec3e341e75d/web

How does it look like?

Registration on MacOS / Chrome (01/24)

Registration on MacOS/Chrome/iOS (01/24)

Registration on MacOS/Safari or Firefox (01/24)

🤔

“Currently, YubiKeys can store a maximum
of 25 passkeys.” (if you've never entered a
PIN when you registered your Yubikey you
are not using resident keys).

Or from Chrome…

Managing passkeys on MacOS/Chrome

Managing Passwordskeys on iOS

- Device / platform account loss

- Passkey management & review

~ Passkeys transfer/sharing

- User enumeration

~ CA revocation

~ Quantum computers? Weak PQC?

~ & more (UI redressing, proximity)

Passkeys security issues

Security issues:

~ Account recovery? More passkeys?

~ User training? Better UX? Alerts?

~ Better signalization of sharing props?

~ Random username / fake credential ids?

~ Forced rotations? Devices exclusion?

- Crypto agility?

~ RTFM?

Implementation considerations:

Passkeys other issues

- Fragmented end user experience

- Specs depth & stability

- Entry barrier for authenticators

- Pay to play

Other issues:

~ UX Working group

~ Passkeys “the good parts”? RP Guidelines?

~ Monkey patching? EU Fines?

~ Pooling of resources for open source actors

Other considerations:

Questions? 🍅?

Thank you Fosdem
🍻❤

