Mainline Linux on Qualcomm SoCs, are we here now?

Yes, and we’re in pretty good shape!

Neil Armstrong - Linaro Developers Services

FOSDEM’24
Brussels / 3 & 4 February 2024
Introduction

- Qualcomm Landing Team @ Linaro
 - Qualcomm upstream maintenance
 - U-Boot Qualcomm baseport co-maintainer
 - Bringup/addition of new platforms
- I also maintain other upstream pieces
 - Amlogic SoCs
 - Linux & U-Boot architecture
 - Clocks
 - Pinctrl, Serial, CEC …
 - DRM
 - Bridge drivers
 - Panel drivers
 - Amlogic Display driver
- Primarily focussed on Linux Kernel
 - 1194 patches in mainline from v3.1 to v6.8-rc1, 176 Qualcomm related
- But also in U-Boot (265 patches in mainline as v2024.01)
Linaro is the software engine of the Arm Ecosystem

Linaro empowers rapid product deployment within the dynamic Arm Ecosystem.

- Our cutting-edge solutions, services and collaborative platforms facilitate the swift development, testing, and delivery of Arm-based innovations, enabling businesses to stay ahead in today’s competitive technology landscape.

- Our expertise and contributions spread from Testing & LTS, Security, Cloud & Edge Computing, IoT, AI, CI/CD, Toolchain and Virtualization to vertical projects like Windows on Arm and Android Ecosystem enabling and maintenance.

- Linaro fosters an environment of collaboration, standardization and optimization among businesses and open source ecosystems to accelerate the deployment of Arm-based products and technologies along with representing a pivotal role in open source discovery and adoption.

Linaro has enabled trust, quality and collaboration since 2010
Linaro & Qualcomm

- Qualcomm joined Linaro in 2014
 - When a company joins as a member, they work together on joint engineering projects
 - Originally focused on the Linux kernel but now collaborate in many other areas
 - OpTEE, U-Boot, QEMU, SOAFEE, ...
 - Member companies also participate in setting Linaro's strategic direction
 - Qualcomm Membership included the Landing Team
 - Linaro engineers work closely with Qualcomm on their objectives
 - Everyone involved is happy with how things are going
 - Has increased its cooperation with Linaro over the years
Linaro & Qualcomm

- Collaborated on multiple key pieces of the Android and Linux ecosystem
 - Power frameworks
 - Energy Aware Scheduler
 - Arm servers – standards and software architecture
 - 96Boards DragonBoards (410c, 820c, RB1, RB2, RB3, RB5, etc,...)
 - CodeLinaro
 - Became the principal development platform for Linaro projects
 - Flagship mobile platforms upstreaming
 - Snapdragon 8 Gen 1 - upstream support in the year after the announcement
 - Snapdragon 8 Gen 2 - upstream support in the 6 months after the announcement
 - Snapdragon 8 Gen 3 - upstream support in the 2 months after the announcement
Agenda

1. Where we came from
2. Where we are now
3. A tour of supported devices
4. Demo time!
5. What’s remaining
6. We need your help!
Qualcomm Downstream Changes in 2015

Kernel Mainline Status of Mobile Chipsets

September, 2015

Tim Bird
LF CE Workgroup

Downstream Changes for mobile phones

<table>
<thead>
<tr>
<th>Company</th>
<th>SOC</th>
<th>Files</th>
<th>Insertions</th>
<th>Deletions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG</td>
<td>Msm</td>
<td>5775</td>
<td>2.616M</td>
<td>40K</td>
</tr>
<tr>
<td>Motorola</td>
<td>Msm</td>
<td>4490</td>
<td>1.795M</td>
<td>40K</td>
</tr>
<tr>
<td>Samsung</td>
<td>Exynos</td>
<td>2877</td>
<td>1.100M</td>
<td>51K</td>
</tr>
<tr>
<td>Samsung</td>
<td>Msm</td>
<td>6096</td>
<td>3.105M</td>
<td>53K</td>
</tr>
<tr>
<td>Sony</td>
<td>Msm</td>
<td>4625</td>
<td>1.784M</td>
<td>41K</td>
</tr>
<tr>
<td>Sony</td>
<td>Mediatek</td>
<td>3689</td>
<td>1.935M</td>
<td>7K</td>
</tr>
<tr>
<td>Acer</td>
<td>Mediatek</td>
<td>3122</td>
<td>1.411M</td>
<td>6K</td>
</tr>
<tr>
<td>Asus</td>
<td>Atom</td>
<td>7351</td>
<td>2.163M</td>
<td>22K</td>
</tr>
<tr>
<td>Huawei</td>
<td>Hisilicon</td>
<td>5082</td>
<td>2.659M</td>
<td>43K</td>
</tr>
</tbody>
</table>
Qualcomm Downstream Kernel Changes

Changes across releases:

- New SoC Support
 - Accumulated over time

Better alignment to LTS Kernels, changes existing code instead of adding new code

Year 2019
Qualcomm Upstream State in 2016

ELC-E 2016 Neil Armstrong - No, it's never too late to upstream your legacy linux based platform

Why should I push code for my (legacy) linux based platform?

Hopefully, we can count some vendors that really participate in the upstream work like:

- Intel
- IBM
- Texas Instruments
- Atmel (Microchip)
- Broadcom
- Renesas
- Freescale (NXP)
- ...

FOR QUALCOMM UPSTREAM SUPPORT

STILL WAITING
Linaro Qualcomm Landing Team work

Linaro has worked on big features in the last 10 years:

● RemoteProc/rpmsg to handle DSPs
● Interconnect
● Venus Video Encoder/Decoder
● DSP Audio/Audioreach
● MSM DRM Driver
● Soundwire
● And plenty of other time-consuming subjects!
Qualcomm Linaro Upstream Contributions

Timeline of Qualcomm major changes vs Qualcomm Related commits:

for id in $(git tag | grep -E "^v\[0-9.\][0-9]+\$" | sort -V); do echo -n $id, ; git log --oneline --author=linaro -G "qcom|msm|qualcomm" $PREV..$id | wc -l; PREV=$id; done

10y ago

today
Mainline Supported boards over time

for id in $(git tag | grep -E "^v\[0-9].\[0-9].*" | sort -V); do echo -n $id, ; git ls-tree --name-only -r $id | grep -E "arch/.*/boot/dts/*qcom.*.dts" | wc -l; done
New Supported boards over time

10y ago

Today (v6.8-rc1)

Manually corrected since arm32 DTs were moved in subdirectories in V6.5...

for id in $(git tag | grep -E "^v[0-9].[0-9]+$" | sort -V); do echo -n $id, ; BOARDS=$(git ls-tree --name-only -r $id | grep -E "arch/.*/boot/dts/*qcom.*.dts$"); diff -u <(git ls-tree --name-only -r $PREREV | grep -E "arch/.*/boot/dts/*qcom.*.dts$") <(git ls-tree --name-only -r $id | grep -E "arch/.*/boot/dts/*qcom.*.dts$") | grep "\+arch" | wc -l; PREREV=$id; done
Historical Dragonboards

The 96board DragonBoards were the first widely available Qualcomm Development platforms in SBC form-factor and boosted the upstreaming effort.

DragonBoard 410c

DragonBoard 820C
Qualcomm Robotic Boards

These are the mid-end development boards offered by Qualcomm, using robust and well-supported platforms

RB1 / RB2

RB3

RB5
Commercial Phones

An handful of commercial phones are running mobile oriented mainline Linux-based distros like postmarketOS

OnePlus 6T
FairPhone 4
FairPhone 5
Tablets/Convertibles

An handful of tablets/convertibles can run mobile oriented mainline Linux-based distros like postmarketOS or bare Ubuntu
Qualcomm High-End Reference Devices

The Qualcomm Reference Devices & Development Kits are the primary development devices for upstreaming Snapdragon 8 Gen 1 & 2 Hardware Development Kits with debug test points & connectors
Snapdragon 8 Gen 3 Support Status

- Supported as Linux v6.8-rc1
 - Display👍
 - UFS, PCIe, USB & Bluetooth👍
 - Thermal Sensors & CPU Frequency Scaling👍
 - USB-C👍
 - Suspend/Resume👍
 - Crypto Accelerators👍

- Work in Progress
 - Audio (Codec, USB-C Audio Accessory Mode)
 - DisplayPort Altmode (👍 on Gen 1 & Gen 2)
 - DSPs (Modem, Compute & Audio DSP) (👍 on Gen 1 & Gen 2)
 - USB-C PD/Charger (👍 on Gen 1 & Gen 2)
 - GPU (👍 on Gen 1 & Gen 2)
Lenovo X13s

Qualcomm SC8280xp based Laptop

Status maintained by Johan Hovold: https://github.com/jhovold/linux/wiki/X13s

X13s Running KDE on Armbian

X13s Running Quake3

X13s Running Crysis with FEX Emu

https://www.youtube.com/watch?v=7HuPhM03aBw
Lenovo X13s

Support Status (also for SC8280xp SoC):

- GPU Acceleration, Display & Backlight 👍
- PCIe, WiFi & Bluetooth 👍
- NVMe 👍
- KeyBoard & Trackpad 👍
- Thermal Sensors & CPU Frequency Scaling 👍
- USB-C and DisplayPort Altmode 👍
- Suspend/Resume 👍
- Audio 👍
- UEFI Boot with EFI Variables 👍

But there’s obviously some Work In Progress!
Lenovo X13s

Work In Progress:

● Built-in Camera is a work in progress and is not available upstream/publicly
● Embedded Controller is a work in progress
 ○ Needed to support Keyboard's Special Keys and system events
● Active Work to improve power management
 ○ Constant incremental improvements being made there (Suspend/Resume, ...)
● Some WiFi and Bluetooth issues remain, but they are relatively minor.
● Audio works, requires Active speaker protection
 ○ DisplayPort Audio is a work in progress
● Miscellaneous
 ○ Fingerprint reader
 ○ Video acceleration
 ○ USB-C Power Delivery
Linux Distributions for the X13s

- Fedora Rawhide images are bootable as of the 15th of December, 2023
 - https://fedoraproject.org/wiki/Thinkpad_X13s
- Armbian Maintained Port
 - https://www.armbian.com/lenovo-x13s/
- Ubuntu 23.10 will install “as is”
 - May require some slight configurations
- As of October 11, 2023, Debian Trixie can be installed on the Thinkpad X13s using the daily `netinst` image.
 - https://wiki.debian.org/InstallingDebianOn/Thinkpad/X13s
- Scripts Available to boot other distros
 - Arch Linux/EndeavourOS
Demo time!

If everything went fine, presentation should run on a Qualcomm platform!

If not, I’ll show you a running device!
What’s remaining

● Power optimization
 ○ Qualcomm SoCs are known to be very complex in this regard
● Performance Optimization
 ○ Add Bus scaling on all needed busses (PCIe, UFS,...)
● Advanced Graphics Features (HDR, ...)
● Video Decoding Accelerator
 ○ Support for Snapdragon 8 Gen 2 is on the lists
● Camera support on new platforms
● Audio support on new platforms
 ○ + DisplayPort Audio
 ○ Speaker Protection
● Miscellaneous features
 ○ Sensor Hub
 ○ Haptic Feedback & Vibrator
● Next platforms !
We need your help!

- The Upstream Linux Qualcomm is a very active community!
 - Has the largest ARM64 changes in the last year
- Now ready to support mainstream devices
 - Phones
 - Laptops
 - Modem
 - Accessories
- Work is also in Progress in U-boot
 - Universal Bootloader becomes true!
- Global status: https://linaro.github.io/msm/ ->
- => linux-arm-msm@vger.kernel.org
- => #linux-msm on https://www.oftc.net/
Platform Specifications

WIFI Capability

<table>
<thead>
<tr>
<th>Platform</th>
<th>WiFi Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>APQ8054</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>MSM8955</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>MSM8978</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>SC7280</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>SC7290</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>SC8895X/8897P</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>SDM665</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>SDM860</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>SME850</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>SDM850</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>S8650</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>SDM875</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>SM9520</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>SM9550</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>SM9550</td>
<td>2.4 GHz</td>
</tr>
</tbody>
</table>

Bluetooth Connection

- Bluetooth connection details are not provided in the specified manner. Please refer to the source document for detailed specifications.
Thank you

Slides?

Visit www.linaro.org

Reach out to me at neil.armstrong@linaro.org or narmstrong on Libera.Chat & OFTC