
Foreign Function & Memory API
A (quick) peek under the hood

Maurizio Cimadamore

Compiler Architect

Beyond “Pure Java”

Native interop frown upon – “Pure Java” used to be the goal

• “Use native methods judiciously” (J. Bloch, Effective Java 3rd edition)

While there are many great Java libraries, there are increasingly many important native-only libraries

• Off-CPU computing (Cuda, OpenCL)

• Machine Learning (Blis, ONNX, Tensorflow)

• Graphics processing (OpenGL, Vulkan, DirectX)

• Others (CRIU, fuse, io_uring, OpenSSL, V8, ucx)

These libraries won’t be, and don’t need to be, rewritten in Java

2 Copyright © 2024, Oracle and/or its affiliates

Java Native Interface

The Java Native Interface (JNI) can be used to access to functionalities not available in JDK

JNI allows classes to declare native methods

• Native methods do not have a body (analogy: abstract methods)

• Implementation written in native languages such as C or C++ (or even assembly!)

Problems

• Native-first programming model, brittle combination of Java and C

• Expensive to maintain and deploy

• Passing data to/from JNI is cumbersome and inefficient (more on that later)

3 Copyright © 2024, Oracle and/or its affiliates

JNI and data

Native functions often need to exchange (off-heap) data with Java programs

• JNI calling conventions only support primitive types and Java objects

Direct buffers allow developers to allocate and access off-heap memory

• Can be passed to native methods (with some overhead)

• Can be accessed directly from C/C++ code (using JNI functions)

Problems

• No way to free/unmap

• Limited addressing space (2GB)

• Inflexible addressing options (either sequential or offset-based)

4 Copyright © 2024, Oracle and/or its affiliates

5 Copyright © 2024, Oracle and/or its affiliates

JNI workflow

6 Copyright © 2024, Oracle and/or its affiliates

JNI workflow

We need a new Java-first programming model for non-Java resources (both code and data)

• Replace JNI with a more direct, pure Java paradigm

• Replace direct buffers with a more safe, efficient and future-proof API

• Simplify building and distributing Java bindings for popular native libraries

• Allow for existing frameworks (JNA, JNR, JavaCPP, …) to be built on top of more solid foundations

Enter Panama

7 Copyright © 2024, Oracle and/or its affiliates

We need a new Java-first programming model for non-Java resources (both code and data)

• Replace JNI with a more direct, pure Java paradigm

• Replace direct buffers with a more safe, efficient and future-proof API

• Simplify building and distributing Java bindings for popular native libraries

• Allow for existing frameworks (JNA, JNR, JavaCPP, …) to be built on top of more solid foundations

Enter Panama

8 Copyright © 2024, Oracle and/or its affiliates

We need a new Java-first programming model for non-Java resources (both code and data)

• Replace JNI with a more direct, pure Java paradigm

• Replace direct buffers with a more safe, efficient and future-proof API

• Simplify building and distributing Java bindings for popular native libraries

• Allow for existing frameworks (JNA, JNR, JavaCPP, …) to be built on top of more solid foundations

Enter Panama

9 Copyright © 2024, Oracle and/or its affiliates

Accessing native memory

A memory segment provides access to a contiguous region of memory

Two kinds of memory segments

• H

• N

Access to all memory segments is governed by the following characteristics

• Size -> no out of bounds access

• Lifetime -> no use-after-free

• Confinement (optional) -> no data races

10 Copyright © 2024, Oracle and/or its affiliates

• Size → no out-of-bounds access

• Lifetime → no use-after-free

• Confinement (optional) → no data races

• Heap segments → access to memory inside the Java heap (e.g. Java array)

• Native segments → access to memory outside the Java heap (e.g. malloc/mmap)

Accessing native memory

11 Copyright © 2024, Oracle and/or its affiliates

// struct Point2d {
// double x;
// double y;
// } point = { 3.0, 4.0 };

MemorySegment point = Arena.ofAuto().allocate(8 * 2);
point.set(ValueLayout.JAVA_DOUBLE, 0, 3d);
point.set(ValueLayout.JAVA_DOUBLE, 8, 4d);

Automatic memory management

Java features automatic memory management, using a garbage collector (GC)

Programs create objects (new), the GC “frees” them (e.g. recycles them) when no longer needed

• Concept of reachability

• One of the corner stones of Java’s success!

Direct buffers rely on GC to perform off-heap memory deallocation, but there’s issues:

• A small on-heap Java buffer instance can hold on to a big chunk of off-heap memory

• Materializing reachability graphs is expensive (more so in low-latency collectors)

• GC cannot track usage of off-heap resources from native code

Challenge: provide deterministic deallocation in language built on automatic memory management!

12 Copyright © 2024, Oracle and/or its affiliates

Arena-based memory management

An arena models the lifecycle of one or more memory segments

• All segments allocated in the arena share the same lifetime

Many kinds of arenas, providing different deallocation/access policies

• Global

• Automatic

• Confined

• Shared

Strong safety guarantee: no use-after-free

• When the arena is closed, all its segments are invalidated, atomically

• Closing a shared arena triggers a thread-local handshake (JEP 312)

Clients can define custom arenas to support efficient allocation strategies

13 Copyright © 2024, Oracle and/or its affiliates

• Global → unbounded lifetime multi-thread access

• Automatic → automatic bounded lifetime multi-thread access

• Confined → explicit bounded lifetime single-thread access

• Shared → explicit bounded lifetime multi-thread access

Arena-based memory management

14 Copyright © 2024, Oracle and/or its affiliates

SafetyFlexibility

Freeing memory with arenas

15 Copyright © 2024, Oracle and/or its affiliates

// struct Point2d {
// double x;
// double y;
// } point = { 3.0, 4.0 };

try (Arena offHeap = Arena.ofConfined()) {
 MemorySegment point = offHeap.allocate(8 * 2);
 point.set(ValueLayout.JAVA_DOUBLE, 0, 3d);
 point.set(ValueLayout.JAVA_DOUBLE, 8, 4d);
} // free

Memory layouts

Often memory access occurs in a structured fashion (point.y)

• Manual offset computation is tedious and error-prone

Memory layouts describe contents of a memory region programmatically

• Layouts can be queried to obtain sizes, alignments and var handles

More declarative code, less places for bugs to hide!

16 Copyright © 2024, Oracle and/or its affiliates

struct Point2d {
 double x;
 double y;
};

MemoryLayout.structLayout(
 ValueLayout.JAVA_DOUBLE.withName(“x”),
 ValueLayout.JAVA_DOUBLE.withName(“y”)
);

Structured access with layouts

Copyright © 2024, Oracle and/or its affiliates 17

// struct Point2d {
// double x;
// double y;
// } point = { 3.0, 4.0 };

MemoryLayout POINT_2D = MemoryLayout.structLayout(
 ValueLayout.JAVA_DOUBLE.withName(“x”),
 ValueLayout.JAVA_DOUBLE.withName(“y”)
);

VarHandle xHandle = POINT_2D.varHandle(PathElement.groupLayout(“x”));
VarHandle yHandle = POINT_2D.varHandle(PathElement.groupLayout(“y”));

try (Arena offHeap = Arena.ofConfined()) {
 MemorySegment point = offHeap.allocate(POINT_2D);
 xHandle.set(point, 0L, 3d);
 yHandle.set(point, 0L, 4d);
} // free

Linking native functions

The native linker implements the calling conventions of the platform in which the JVM runs

Provides two core capabilities:

• Link a library symbol into a downcall method handle, callable from Java

• Obtain an upcall stub, used to invoke a method handle from native code

The native linker builds on what we have seen so far

• Memory layouts used to describe signatures of C functions

• Memory segments used to pass pointers/structs/unions to C functions

• Arenas used to model the lifetime of upcall stubs/loaded libraries

18 Copyright © 2024, Oracle and/or its affiliates

Anatomy of a native call

19 Copyright © 2024, Oracle and/or its affiliates

struct Point2d {
 double x;
 double y;
};

extern double distance(struct Point2d p);

void main(void) {
 struct Point2d p = { 3.0, 4.0 };
 distance(p);
}

Anatomy of a native call
Linux x64

20 Copyright © 2024, Oracle and/or its affiliates

struct Point2d {
 double x;
 double y;
};

extern double distance(struct Point2d p);

void main(void) {
 struct Point2d p = { 3.0, 4.0 };
 distance(p);
}

movsd xmm0, QWORD PTR .LC0[rip] ; 3
movsd xmm1, QWORD PTR .LC1[rip] ; 4
call distance

Anatomy of a native call
Windows x64

21 Copyright © 2024, Oracle and/or its affiliates

struct Point2d {
 double x;
 double y;
};

extern double distance(struct Point2d p);

void main(void) {
 struct Point2d p = { 3.0, 4.0 };
 distance(p);
}

movups xmm0, XMMWORD PTR p$[rsp]
movdqu XMMWORD PTR $T1[rsp], xmm0
lea rcx, QWORD PTR $T1[rsp]
call distance

Downcall method handles

22 Copyright © 2024, Oracle and/or its affiliates

// extern double distance(struct Point2d p);
MemorySegment distanceAddress = SymbolLookup.loaderLookup()
 .lookup(“distance”).get();
MethodHandle distanceHandle = Linker.nativeLinker().downcallHandle(
 distanceAddress,
 FunctionDescriptor.of(JAVA_DOUBLE, POINT_2D));

try (Arena offHeap = Arena.ofConfined()) {
 MemorySegment point = offHeap.allocate(POINT_2D);
 xHandle.set(point, 0L, 3d);
 yHandle.set(point, 0L, 4d);
 double dist = distanceHandle.invokeExact(point); // 5d
}

Safety

Calling foreign functions is fundamentally unsafe

• Returned foreign pointers dereferenced incorrectly

• Provided function descriptors might be bad (wrong arity/types)

• Foreign code attempts to access already freed segments

Access to unsafe functionalities provided by restricted methods

• Part of the SE API, runtime warning generated on first access

• Warnings can be disabled by granting selected modules native access

--enable-native-access <module-name>

Restricted methods pave the way towards a safer Java/native interop

• JNI to follow, warnings will become errors

• Complete the “integrity by default” push started with Java 9

23 Copyright © 2024, Oracle and/or its affiliates

24 Copyright © 2024, Oracle and/or its affiliates

FFM API workflow

25 Copyright © 2024, Oracle and/or its affiliates

FFM API workflow

26 Copyright © 2024, Oracle and/or its affiliates

Enter jextract

Qsort with jextract

27 Copyright © 2024, Oracle and/or its affiliates

// stdlib.h
typedef int (*__compar_fn_t) (const void *, const void *);
void qsort (void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar);

Qsort with jextract

28 Copyright © 2024, Oracle and/or its affiliates

// stdlib.h
typedef int (*__compar_fn_t) (const void *, const void *);
void qsort (void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar);

$ jextract –-target-package org.stdlib /usr/include/stdlib.h

Qsort with jextract

29 Copyright © 2024, Oracle and/or its affiliates

// stdlib.h
typedef int (*__compar_fn_t) (const void *, const void *);
void qsort (void *__base, size_t __nmemb, size_t __size, __compar_fn_t __compar);

$ jextract –-target-package org.stdlib /usr/include/stdlib.h

import static org.stdlib.stdlib_h.*;
…

try (Arena offHeap = Arena.ofConfined()) {
 MemorySegment array = offHeap.allocateFrom(C_INT, 0, 9, 3, 4, 6, 5, 1, 8, 2, 7);

 var compareFunc = __compar_fn_t.allocate((a1, a2) ->
 Integer.compare(a1.get(C_INT, 0), a2.get(C_INT, 0)), offHeap);
 qsort(array, 10L, 4L, comparFunc);

 int[] sorted = array.toArray(JAVA_INT); // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
}

Qsort with JNI

//qsort.java
class qsort {
 static {
 System.loadLibrary(“libqsort”);
 }

 static native void jni_qsort(int[] array);

 static int jni_upcall_compar(int j0, int j1) {
 return Integer.compare(j0, j1);
 }
}

//qsort.h
#include <jni.h>
/* Header for class qsort */

#ifndef _Included_qsort
#define _Included_qsort
/*
 * Class: qsort
 * Method: jni_qsort
 * Signature: ([I)V
 */
JNIEXPORT void JNICALL Java_qsort_jni_1qsort
 (JNIEnv *, jclass, jintArray);

#endif

// libqsort.c
#include "qsort.h"

JavaVM* VM = NULL;

int java_cmp(const void *a, const void *b) {
 int v1 = *((int*)a);
 int v2 = *((int*)b);

 JNIEnv* env;
 (*VM)->GetEnv(VM, (void**) &env, JNI_VERSION_10);

 jclass qsortClass = (*env)->FindClass(env, "qsort");
 jmethodID methodId = (*env)->GetStaticMethodID(env, qsortClass, "jni_upcall_compar", "(II)I");

 return (*env)->CallStaticIntMethod(env, qsortClass, methodId, v1, v2);
}

JNIEXPORT void JNICALL Java_qsort_jni_1qsort(JNIEnv *env, jclass cls, jintArray arr) {
 if (VM == NULL) {
 (*env)->GetJavaVM(env, &VM);
 }

 jint* carr = (*env)->GetIntArrayElements(env, arr, 0);
 jsize length = (*env)->GetArrayLength(env, arr);
 qsort(carr, length, sizeof(jint), java_cmp);
 (*env)->ReleaseIntArrayElements(env, arr, carr, 0);
}

30 Copyright © 2024, Oracle and/or its affiliates

Performance

0

200

400

600

800

1000

1200

1400

T
im

e
 (

n
s/

o
p

)

qsort (lower is better)

JNI FFM

31 Copyright © 2024, Oracle and/or its affiliates

Wrapping up

The FFM API provides safe and efficient access to native memory

• Deterministic deallocation, layout API to enable structured access

The FFM API provides general, direct and efficient access to native functions

• 100% Java, no need to write (and maintain!) native code

The FFM API provides the foundations of the Panama interop story

• Tooling (e.g. jextract) to generate layouts, var/method handles

32 Copyright © 2024, Oracle and/or its affiliates

A substrate for native access in the JVM

33 Copyright © 2024, Oracle and/or its affiliates

Adoption

34 Copyright © 2024, Oracle and/or its affiliates

Useful links

Try the FFM API in JDK 22!

• https://jdk.java.net/22/

• https://openjdk.org/jeps/454

• Subscribe to panama-dev@openjdk.org and send feedback!

Generate FFM bindings with the jextract tool

• https://jdk.java.net/jextract/

Build the latest version of the FFM API & jextract

• https://github.com/openjdk/panama-foreign

• https://github.com/openjdk/jextract

35 Copyright © 2024, Oracle and/or its affiliates

https://jdk.java.net/22/
https://openjdk.org/jeps/454
mailto:panama-dev@openjdk.org
https://jdk.java.net/jextract/
https://github.com/openjdk/panama-foreign
https://github.com/openjdk/jextract

Foreign Function & Memory API

Maurizio Cimadamore

Compiler Architect

A (quick) peek under the hood

	All slides
	Slide 1: Foreign Function & Memory API
	Slide 2: Beyond “Pure Java”
	Slide 3: Java Native Interface
	Slide 4: JNI and data
	Slide 5: JNI workflow
	Slide 6: JNI workflow
	Slide 7: Enter Panama
	Slide 8: Enter Panama
	Slide 9: Enter Panama
	Slide 10: Accessing native memory
	Slide 11: Accessing native memory
	Slide 12: Automatic memory management
	Slide 13: Arena-based memory management
	Slide 14: Arena-based memory management
	Slide 15: Freeing memory with arenas
	Slide 16: Memory layouts
	Slide 17: Structured access with layouts
	Slide 18: Linking native functions
	Slide 19: Anatomy of a native call
	Slide 20: Anatomy of a native call
	Slide 21: Anatomy of a native call
	Slide 22: Downcall method handles
	Slide 23: Safety
	Slide 24: FFM API workflow
	Slide 25: FFM API workflow
	Slide 26: Enter jextract
	Slide 27: Qsort with jextract
	Slide 28: Qsort with jextract
	Slide 29: Qsort with jextract
	Slide 30: Qsort with JNI
	Slide 31: Performance
	Slide 32: Wrapping up
	Slide 33: A substrate for native access in the JVM
	Slide 34: Adoption
	Slide 35: Useful links
	Slide 36: Foreign Function & Memory API

