
RISC‐V Bootstrapping in Guix and
Live‐Bootstrap

Status report for 2023, and what’s coming up next

Ekaitz Zárraga

Before we start

If you want details and don’t mind reading large text walls full of
nitty‐gritty details, you can leave this talk and read all the
blogposts I did on the process1

You can still stay here and smile, too.

1https://ekaitz.elenq.tech/tag/bootstrapping‐gcc‐in‐risc‐v.html

https://ekaitz.elenq.tech/tag/bootstrapping-gcc-in-risc-v.html

Who I am

• Telecommunication engineer (EEE equivalent)

• Freelance engineer/programmer at ElenQ.Tech2

• Guix user and contributor

• You might remember me from my talk last year: “Bringing
RISC‐V to Guix’s bootstrap”

2https://elenq.tech

https://elenq.tech

Context

• In 2021 NlNet3 funded me to do some bootstrapping work:
I backported RISC‐V support to GCC 4.6.4 from 7.5, and to
our TinyCC‐Boot from upstream TinyCC. These were
fundamental points in our bootstrap chain.

• I explained that in FOSDEM 20234.

3https://nlnet.nl/project/GNUMes‐RISCV/index.html
4https://archive.fosdem.org/2023/schedule/event/guixriscv/

https://nlnet.nl/project/GNUMes-RISCV/index.html
https://archive.fosdem.org/2023/schedule/event/guixriscv/

Intro
• The work wasn’t finished so I asked for a second grant to
NlNet5.

• I was tired of the previous effort and I needed help. I
decided to bring more people to the project:

• Andrius Štikonas: Involved in live-bootstrap, stage-0
and the related projects. Has the context awareness I lack.

• Janneke: Mes maintainer and author, TinyCC-boot
maintainer and guix contributor. All these projects are
structural to the bootstrapping process.

• More people

• My goal was to pay people for their good work, using the
success of my previous effort as a lever to get funded.

5https://nlnet.nl/project/GNUMes‐RISCV‐bootstrap/

https://nlnet.nl/project/GNUMes-RISCV-bootstrap/

In pictures

Bootstrapping process ‐ Before
• Colors represent RISC‐V
support:

• RED: no RISC‐V
support

• ORANGE: some RISC‐V
support

• GREEN: full RISC‐V
support

• TinyCC‐boot and GCC
(old) are RED.

Stage0-Posix

Mes

TinyCC-Boot

TinyCC

GCC (old)

GCC

The World™

Bootstrapping process ‐ After the Backport (2022)
• Arrows are still RED

• At that time I didn’t know
TinyCC was ORANGE,
that was discovered later

• GCC (old) was actually
GREENER than I thought

Stage0-Posix

Mes

TinyCC-Boot

TinyCC

GCC (old)

GCC

The World™

Bootstrapping process ‐ Now
• TinyCC‐Boot is GREEN
now

• The GREEN rectangle is
included in Guix and
live-bootstrap

• GCC (old) is GREEN now:
Tested in Debian in real
RISC‐V hardware.

Stage0-Posix

Guix and Live-Bootstrap

Mes

TinyCC-Boot

TinyCC

GCC (old)

GCC

The World™

Bootstrapping process ‐ Future
• ‐> TinyCC requires
changes in MesLibC

• ‐> GCC (old):
• requires make

• TinyCC claims to be
able to build GCC 4, but
we didn’t test that (i386
bootstrap uses GCC
2.95 in between).

• ‐> GCC should just work

• A powerful libc is
needed, built with TinyCC,
which doesn’t support
Extended Assembly.

Stage0-Posix

Guix and Live-Bootstrap

Mes

TinyCC-Boot

TinyCC

GCC (old)

GCC

The World™

Questions?

Limitations of the backport

TinyCC

• I only tested the backend, in an emulated environment,
using a using TinyCC as a cross‐compiler

• I tested on GLibC, but in the bootstrapping process it uses
MesLibC, a minimal LibC, part of Mes.

• TinyCC‐Boot is in fact compiled several times (up to 6) with
different features (using conditional compilation via macro
definitions like -D...).

• In a cross compiled environment this is not possible to test

• I didn’t test the TinyCC RISC‐V assembler, which happened
to be unimplemented (yeah… LOL), and it’s needed for the
LibC.

TinyCC

Tcc-Boot5

Tcc-Boot6

Tcc-Boot5 Tcc-Boot6
=?

TinyCC-Boot

TinyCC-Boot source code

...

MesCC

Tcc-Mes

Tcc-Boot0

Tcc-Boot1

 -D HAVE_BITFIELD=1

TinyCC‐Boot bootstrapping process

GCC

• I tested it as a Cross‐Compiler, so only the backend was
tested. Again, no bootstrap6.

• It never compiled itself

• I didn’t work on the C++ support

6GCC has a bootstrap process that checks if the compiler works correctly.
First, it’s compiled with your compiler of choice. Then, the resulting binary is
used to compile the GCC codebase again. The result of that compiles GCC
again. Then the binaries are compared, to make sure they are identical. This
can’t be done in a cross‐compiled environment, for obvious reasons.

The work

TinyCC‐Boot

We focused on this, and let the other projects be carried by this
effort.

• Andrius and I spent many nights debugging crazy things in
here.

• TinyCC’s codebase is hard to read

• Many errors we got were not reproducible using a TinyCC
compiled with GCC, so we needed to build it from MesCC,
which is very slow

• MesCC doesn’t provide very helpful debug symbols

• We learned many things as we went
I wouldn’t have the energy to make this without Andrius.

TinyCC‐Boot ‐ Crazy things

1 Body is never executed:
if (x < 8) {

// body
}

2 A << 20 >> 20

3 __global_pointer$ is not a valid symbol

4 Assembler uses a weird syntax and doesn’t support
Extended Assembly

5 cannot cast from/to void

6 And segfaults, segfaults everywhere!

Read more about them here7

7https://ekaitz.elenq.tech/bootstrapGcc8.html

https://ekaitz.elenq.tech/bootstrapGcc8.html

TinyCC‐Boot ‐ Results

We finally managed to bootstrap TinyCC‐Boot.

• Andrius included the build recipe in live-bootstrap8

• I did the guix recipe9

8https://github.com/fosslinux/live‐bootstrap/blob/master/steps/tcc‐0.9.
26/pass1.kaem

9https://issues.guix.gnu.org/68222

https://github.com/fosslinux/live-bootstrap/blob/master/steps/tcc-0.9.26/pass1.kaem
https://github.com/fosslinux/live-bootstrap/blob/master/steps/tcc-0.9.26/pass1.kaem
https://issues.guix.gnu.org/68222

GNU Mes

The problems we found in TinyCC‐Boot made us improve Mes
in several ways:

• MesCC, the C compiler, had some limitations that were
unnoticed in the i386 bootstrap that appeared in RISC‐V:
faulty switch-cases, wrong struct initializations, some
integer weirdness…

• MesLibC, had to be split for our TinyCC as it doesn’t
support Extended Assembly, and it also needed some extra
tweaks: char signedness, va_args support, build script
support for the changes…
Having Janneke with us made the process very smooth.

GCC

• We compiled GCC with itself in a Debian machine in real
RISC‐V hardware

• Including C++ support

• Only needed a few commits!10

• Guix recipe is pending, as we need to fix other steps to be
able to add this: make, a proper libc, TinyCC…

10https://github.com/ekaitz‐zarraga/gcc/compare/working‐compiler...riscv

https://github.com/ekaitz-zarraga/gcc/compare/working-compiler...riscv

Last words

Last words

• People is important: I felt alone, and I didn’t know how to
continue. If I had to spend another year working alone I
would’ve just rejected the project. Bringing people gave me
energy, knowledge and emotional support

• Money is important: thanks to NlNet I had the chance to
pay people for their work and buy some hardware.
Covering people’s basic needs is fundamental. Getting paid
makes people independent, so they can focus on what
they are good at instead of struggling to survive

So

• Thanks, Andrius and Janneke

• Thanks, NlNet

• And…

Thank you

Contact and take part

• Email me: ekaitz@elenq.tech11

• Relevant IRC channels: #bootstrappable, #guix,
#guix-risc-v

11mailto:ekaitz@elenq.tech

mailto:ekaitz@elenq.tech

	In pictures
	Questions?
	Limitations of the backport
	The work
	Last words
	Thank you

