
Private clouds do not need to be legacy!

Fabio Alessandro “Fale” Locati
04 February 2024

EMEA Associate Principal Specialist Solutions Architect @ Red Hat



TOC

What is cloud?

Lessons we can learn from public clouds

Technologies considerations and bets

Conclusions

1



About me

• GNU/Linux user since 2001
• Working with GNU/Linux since 2004
• Working with Public Clouds since 2009
• Certified AWS and Google Cloud Architect
• Currently working for Red Hat

2



Why private cloud?

• Technical requirements
• Legal requirements
• Financial requirements
• Organizational decision

3



What is cloud?



What is cloud?

Cloud computing is the on-demand availability of computer system resources,
especially data storage (cloud storage) and computing power, without direct active
management by the user. (Wikipedia) Cloud computing is the on-demand availability
of computer system resources, especially data storage (cloud storage) and computing
power, without direct active management by the user. (Wikipedia)
A business model where one party rents to a second party computer system resources,
especially data storage (cloud storage) and computing power, with the smallest
granularity possible.

• Time: month -> hour -> minute -> second -> millisecond
• Compute: CPU -> Core -> vCore -> fractional vCPU

4



Lessons we can learn from public
clouds



Separation of concerns

• Standardize the interface between infrastructure and workload
• Scalability at workload level
• Workloads have an abstract concept of the physical architecture

5



Functional business model

• Standardize the interface between infrastructure and workloads
• Bill back infrastructure costs to the workloads owners
• Keep the costs down

6



Maintain control

• Do not use third-party proprietary software
• Evaluate buy vs build decisions preferring the latter
• Set SLO, measure, iterate
• Be aware of lock-ins

Product between the probability that a component will require substitution
during the solution life and the total costs in case of substitution.

7



Technologies considerations and
bets



KISS

• Reduce the complexity of your system to a minimum
• Prefer build-time complexity over run-time complexity
• Minimize the amount of services available

8



Containers

• Use a Kubernetes distribution
• DIY/Community
• Commercial

• Fully open source
• Trustworthy company
• ”Valuable” offering

9



Automation

• Use an immutable approach to infrastructure
• Version the infrastructure (eg: gitops)
• Automate process end-to-end

10



Conclusions



Putting all together

• Infrastructure
• API
• Workloads

11



Putting it all together - Infrastructure

• Create/Architect for multiple DataCenters (and multiple clusters) but hide them
from the workload developer

• Deploy Kubernetes container platform clusters on bare-metal
• Use a tool to manage and abstract the clusters (eg: Open Cluster Management)
• Set SLO, measure, iterate
• Automate all the infrastracture pieces and configuration

12



Putting it all together - API

• Define discrete “regions” based on non-technical requirements, like legal
frameworks (eg: eu, us)

• Standardize the Kubernetes APIs as the only interfaces between infrastructure and
workload

• Start providing only: OCI registry, Object Storage, and a very limited subset of
Kubernetes objects (eg: Pods, Deployments, Stateful SetsServices, PV, PVC,
ConfigMaps, Secrets)

• Provide more services once you have a good strategy to support them and many
of your users are already using the technology (eg: Databases)

13



Putting it all together - Workloads

• Create a simple UX to submit the creation/update/deletion of workloads objects
• Store workloads objects in a versioned storage (eg: git) and automate deployment
• Require (opt-out?) applications resilient to restarts, replications, etc.

14



Thanks

mail@fale.io

14


	What is cloud?
	Lessons we can learn from public clouds
	Technologies considerations and bets
	Conclusions

