Introducing 'Refiners' – A Micro-Framework for Seamless Integration of Adapters in Neural Networks

Benjamin Trom ML @ Finegrain

FOSDEM - 4th February 2024
Evolution of Deep Learning

0 - Statistical Modeling

Problems were solved with mathematical models and statistics based on insights and patterns observed in the data.

1 - Native Deep learning

For every unique task, a new dataset was curated and a model was trained from scratch.

2 - Transfer Learning

Even with smaller datasets, effective models could be developed by transferring knowledge.

3 - Foundational Models

With the invention of Transformers, it was possible to train massive models on massive datasets, e.g. Large Language Models

∞ - AGI

Every single task can be solved in zero-shot, i.e. without training.
AGI

Every single task can be solved in zero-shot, i.e. without training.
AGI

Every single task can be solved in zero-shot, i.e. without training. = We all become Unemployed Engineers
In the meantime...
You can either rely on

Prompt Engineering

- Do not require GPUs or vast amount of data
- Very practical for fast, iterative problem solving
- Limited capabilities, highly dependent on foundation model capabilities

Train Foundation Models

- Very good bragging material
- Requires amounts of data and GPUs
- Inaccessible to most individuals, small companies or research labs
- Very risky: no guarantee that it will solve the actual problem you may want it for
The third way: Adapters

Adaptation is the idea of patching existing powerful models to implement new capabilities

- Parameter efficient: train with smaller GPUs, less data, and more rapidly.
- Flexible and composable: you can train multiple adapters and use them together
- Can extend a foundation model capabilities outside of its training data and even add new modalities.
- Still a good bragging material 😊
Introducing 'Refiners' – A Micro-Framework for Seamless Integration of Adapters in Neural Networks

Adapters for LLMs

source: https://medium.com/@shivansh.kaushik/efficient-model-fine-tuning-for-llms-understanding-peft-by-implementation-fc4d5e985389
Introducing 'Refiners' – A Micro-Framework for Seamless Integration of Adapters in Neural Networks

Benjamin Trom ML@finetext

Adapters for Image Generation

→ ControlNet
→ T2I-Adapter
→ IP-Adapter
→ StyleAligned
→ InstantID

... and many more, with a 2+/week rate for new papers coming out
Imperative code is hard to patch cleanly

There are several ways to patch a foundation model implemented in PyTorch:

- Just duplicate the original codebase and edit it in place
- Refactor the entire codebase to optionally support the adapter
- Monkey patch 🐵

```python
class BasicModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(1, channels, kernel_size)
        self.linear_1 = nn.Linear(hidden_layer_in, hidden_layer_out)
        self.maxpool = nn.MaxPool2d(2)
        self.linear_2 = nn.Linear(hidden_layer_out, output_size)

    def forward(self, x):
        x = self.conv(x)
        x = nn.functional.relu(x)
        x = self.maxpool(x)
        x = x.flatten(start_dim=1)
        x = self.linear_1(x)
        x = nn.functional.relu(x)
        x = self.linear_2(x)
        return nn.functional.softmax(x, dim=0)
```
So, we wrote (yet another) machine learning framework?
We wrote a machine learning micro-framework.
Introducing Refiners

a declarative machine learning library
built on top of PyTorch

Chain
Python class to implement models as trees of layers.

Context
Simplify to flow of data by providing a stateful store to Chains.

Adapter
Tool to simplify “model surgery” required to patch models.
Introducing ‘Refiners’ – A Micro-Framework for Seamless Integration of Adapters in Neural Networks

Benjamin Trom ML@finetn

Chain

Python class to implement models as trees of layers in a declarative manner.

WYSIWYG: if look at the representation of the model in the REPL, you know exactly what it does.

Contains a lot of helpers to manipulate dynamically the model.
Introducing 'Refiners' – A Micro-Framework for Seamless Integration of Adapters in Neural Networks

Chain

PyTorch (Before)

```python
class BasicModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(1, channels, kernel_size)
        self.linear_1 = nn.Linear(hidden_layer_in, hidden_layer_out)
        self.maxpool = nn.MaxPool2d(2)
        self.linear_2 = nn.Linear(hidden_layer_out, output_size)

    def forward(self, x):
        x = self.conv(x)
        x = nn.functional.relu(x)
        x = self.maxpool(x)
        x = x.flatten(start_dim=1)
        x = self.linear_1(x)
        x = nn.functional.relu(x)
        x = self.linear_2(x)
        return nn.functional.softmax(x, dim=0)
```

Refiners (After)

```python
class BasicModel(fl.Chain):
    def __init__(self):
        super().__init__()
        fl.Conv2d(1, channels, kernel_size),
        fl.ReLU(),
        fl.MaxPool2d(2),
        fl.Flatten(start_dim=1),
        fl.Linear(hidden_layer_in, hidden_layer_out),
        fl.ReLU(),
        fl.Linear(hidden_layer_out, output_size),
        fl.Lambda(lambda x: torch.nn.functional.softmax(x, dim=0)),
```

FOSDEM 4th February 2024
Let us instantiate the BasicModel we just defined and inspect its representation in a Python REPL:

```python
>>> m = BasicModel()
>>> m
(CHAIN) BasicModel()
    ├── Conv2d(in_channels=1, out_channels=128, kernel_size=(3, 3), device=cpu, dtype=float32) #1
    │   ├── ReLU()
    │   └── MaxPool2d(kernel_size=2, stride=2)
    └── Flatten(start_dim=1)
        ├── Linear(in_features=21632, out_features=200, device=cpu, dtype=float32) #1
        │   └── ReLU()
        └── Linear(in_features=200, out_features=10, device=cpu, dtype=float32) #2
            └── Softmax()
```
Chain includes several helpers to manipulate the tree. Let's organise the model by wrapping each layer in a subchain.

class ConvLayer(fl.Chain):
 pass

class HiddenLayer(fl.Chain):
 pass

class OutputLayer(fl.Chain):
 pass

m.insert(0, ConvLayer(m.pop(0), m.pop(0), m.pop(0)))
m.insert_after_type(ConvLayer, HiddenLayer(m.pop(1), m.pop(1), m.pop(1)))
m.append(OutputLayer(m.pop(2), m.pop(2)))
Chain

Did it work? Let's see:

```python
>>> m
(CHAIN) BasicModel()
  (CHAIN) ConvLayer()
    Conv2d(in_channels=1, out_channels=128, kernel_size=(3, 3), device=cpu
    ReLU()
    MaxPool2d(kernel_size=2, stride=2)
  (CHAIN) HiddenLayer()
    Flatten(start_dim=1)
    Linear(in_features=21632, out_features=200, device=cpu, dtype=float32)
    ReLU()
  (CHAIN) OutputLayer()
    Linear(in_features=200, out_features=10, device=cpu, dtype=float32)
    Softmax()
```
Simplify the flow of data by providing a stateful store to nested Chains.

Avoiding "props drilling", exactly like in UI frameworks.

Allow flexibility of using new inputs/modality without modifying existing code.
from refiners.fluxion.context import Contexts

class MyProvider(fl.Chain):
 def init_context(self) -> Contexts:
 return {"my context": {"my key": None}}

m = MyProvider(fl.Chain(
 fl.Sum(
 fl.UseContext("my context", "my key"),
 fl.Lambda(lambda: 2),
),
 fl.SetContext("my context", "my key"),
),
 fl.Chain(
 fl.UseContext("my context", "my key"),
 fl.Lambda(print),
),
)

m.set_context("my context", {"my key": 4})
m() # prints 6
Adapter

- Turn the concept of adaptation into code.
- Provide high-level abstractions to “inject” and “eject” adapters (i.e. restore state)
- Support model surgery by building upon Chain manipulation methods.
Let us take a simple example to see how this works.

We want to adapt the Linear layer.
We want to wrap the Linear into a new Chain that is our Adapter

Note that the original chain is unmodified. You can run inference as if the adapter did not exist.
Introducing ‘Refiners’ – A Micro-Framework for Seamless Integration of Adapters in Neural Networks

Benjamin Trom
ML @ finegrain

FOSDEM 4th February 2024

Adapter

```python
class MyAdapter(fl.Sum, fl.Adapter[fl.Linear]):
    def __init__(self, target: fl.Linear) -> None:
        with self.setup_adapter(target):
            super().__init__(fl.Chain(...), target)

    # Find the target and its parent in the chain.
    # For simplicity let us assume it is the only Linear.
    for target, parent in my_model.walk(fl.Linear):
        break

    adapter = MyAdapter(target)
```


adapter.inject(parent)
We’re currently training adapters in the open

Color Palette adapter

IP-Adapter with Dinov2 embeddings

if you want to train/implement adapters have a look at finegrain.ai/bounties 🧮
Thank you for listening!

Please help us by leaving a Starred on Github to support the project!