H3 upload speed
Table of contents

1. Background
2. HTTP/2 upload speed
3. HTTP/3 upload speed
Mozilla Necko

- Focus on Security, Privacy and Performance
- HTTP, DNS, WebSocket, WebTransport in Firefox Browser
- Caching and Proxies
Networking Performance

- Time to display a page
- How long it takes to upload large files like videos
- Focus on upload in past two years
- In this talk: HTTP/2 and HTTP/3 and their difference
HTTP/2 upload

- HTTP/2: multiple HTTP requests over one TCP connection
- Operating system responsible for send performance in TCP
- Bug: Fixed size send buffer in operating system
- We just need to provide enough data to the operating system
HTTP/2 upload payoff

In some Network conditions upload took 4 times as long

HTTP/2 Upload throughput - Windows

- Chrome Release
- Firefox Release 112
- Firefox Nightly with fix

Network environment:
- 100 mbps, 20ms RTT
- 300 mbps, 100ms RTT
- 300 mbps, 40ms RTT
- 300 mbps, 20ms RTT
- 300 mbps, 10ms RTT
- 600 mbps, 20ms RTT
- 600 mbps, 40ms RTT
- 900 mbps, 40ms RTT

Example values:
- 97 mbps for Chrome Release in 100 mbps, 20ms RTT
- 98 mbps for Firefox Release 112 in 100 mbps, 20ms RTT
HTTP/2 upload payoff

95 percentile doubled from 74 Mbps to 138 Mbps
Differences HTTP/3 and HTTP/2

- HTTP/3: using QUIC as transport layer instead of TCP
- QUIC got standardized alongside HTTP/3 in 2021
- HTTP/3 in Firefox started in 2019, enabled in 2021
- Operating system responsible for send performance in TCP, Firefox in QUIC
- TCP got optimized for decades, QUIC in Firefox only for 2-4 years
Differences HTTP/3 and HTTP/2

- Firefox
- Necko
- HTTP/2
- HTTP/3
- TCP
- QUIC
- Operating System
Concepts in QUIC (and TCP)

- Why: Multiple TCP connections over one QUIC
- TLS integrated → fewer round trip times Handshake
- Avoiding to overload the network: Congestion window (CWND)
- CWND is our estimate on our upload speed
IO-Graph from log: Congestion window drops to almost 0 instead of halving
Congestion Window / Bytes in flight

New IO-Graph including app_limited packets in green
Fixing app_limit detection allows CWND to increase 50-75% faster
HTTP/3 sees steady increase

Tripled from 31 Mbps to 93 Mbps
Current state

3 more known problems that we are resolving
Further work

- CPU bottlenecks
- 1MB fixed size buffer
- Packet reordering causes too much congestion events
- Setting up CI to catch more regression
- Seen much improvements, but still a lot more potential
Thanks for raising bugs and contributing

- https://bugzilla.mozilla.org (H3 upload: [Bug 1852924](https://bugzilla.mozilla.org/show_bug.cgi?id=1852924))
- Matrix: #necko:mozilla.org
- Necko specific documentation
 - https://wiki.mozilla.org/Networking
 - https://firefox-source-docs.mozilla.org/networking
- Blog: https://mozilla-necko.github.io/
- Meeting-notes: https://mozilla-necko.github.io/meeting-notes
- Office hours, where you can talk to us directly
Thank you!
HTTP/1 stayed more similar

95 percentile varies from 109 Mbps to 161 Mbps
Packet reordering