
Django migrations
friend or foe?

Optimize them for testing

FOSDEM 2024

1

WHO AM I

Denny Biasiolli

Full Stack Developer
(JavaScript, Python, Go)

Front End Developer UX/ UI
Fingerprint Compliance Services Ltd.

Italy, Savigliano (CN)

@dennybiasiolli

denny.biasiolli@gmail.com

www.dennybiasiolli.com

2

mailto:denny.biasiolli@gmail.com
https://www.dennybiasiolli.com/
https://www.linkedin.com/in/dennybiasiolli/
https://www.linkedin.com/in/dennybiasiolli/
https://github.com/dennybiasiolli
https://github.com/dennybiasiolli
https://t.me/dennybiasiolli
https://t.me/dennybiasiolli
https://www.instagram.com/dennybiasiolli/
https://www.instagram.com/dennybiasiolli/
https://twitter.com/DennyBiasiolli
https://twitter.com/DennyBiasiolli

MIGRATIONS

Way to propagate changes to models
into a database schema.

https://docs.djangoproject.com/en/4.2/topics/migrations/

3

https://docs.djangoproject.com/en/4.2/topics/migrations/

MIGRATION COMMANDS

 makemigrations

 migrate

 showmigrations

 sqlmigrate

https://docs.djangoproject.com/en/4.2/topics/migrations/#the-commands

4

https://docs.djangoproject.com/en/4.2/topics/migrations/#the-commands

 makemigrations
Creates new migration(s) for apps.

--empty
Create an empty migration.

-n NAME, --name NAME
Use this name for migration file(s)

app_label

manage.py makemigrations [--empty] [-n NAME] [app_label]

https://docs.djangoproject.com/en/4.2/ref/django-admin/#django-admin-makemigrations

5

https://docs.djangoproject.com/en/4.2/ref/django-admin/#django-admin-makemigrations

 makemigrations
Add/edit models

main/models.py
from django.contrib.auth import get_user_model
from django.db import models

class Tweet(models.Model):
 created_by = models.ForeignKey(
 get_user_model(), on_delete=models.CASCADE)
 created_at = models.DateTimeField(auto_now_add=True)
 text = models.CharField(max_length=140)

6

 makemigrations
Create migrations

$ manage.py makemigrations

Migrations for 'main':
 main/migrations/0001_initial.py
 - Create model Tweet

7

 makemigrations
Inspect migration files

Generated by Django 4.1.4 on 2023-01-24 16:00

from django.db import migrations, models
...

class Migration(migrations.Migration):

 initial = True

 dependencies = [
 migrations.swappable_dependency(settings.AUTH_USER_MOD
]

 operations = [
 migrations.CreateModel(
 # ...
),
]

8

 migrate
Updates database schema.

app_label

migration_name
Database state will be brought to the state a�er that
migration. Use the name "zero" to unapply all
migrations.

manage.py migrate [app_label] [migration_name]

https://docs.djangoproject.com/en/4.2/ref/django-admin/#django-admin-migrate

9

https://docs.djangoproject.com/en/4.2/ref/django-admin/#django-admin-migrate

 migrate
First migration

$ manage.py migrate

Operations to perform:
 Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying admin.0003_logentry_add_action_flag_choices... OK
 ...
 Applying auth.0012_alter_user_first_name_max_length... OK
 Applying sessions.0001_initial... OK

10

 migrate
Rollback migrations

$ manage.py migrate admin zero

Operations to perform:
 Unapply all migrations: admin
Running migrations:
 Rendering model states... DONE
 Unapplying admin.0003_logentry_add_action_flag_choices... OK
 Unapplying admin.0002_logentry_remove_auto_add... OK
 Unapplying admin.0001_initial... OK

11

 migrate
Move to a specific migration

manage.py migrate admin 0002_logentry_remove_auto_add
$ manage.py migrate admin 0002

Operations to perform:
 Target specific migration: 0002_logentry_remove_auto_add,
 from admin
Running migrations:
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK

12

 migrate
Applying missing migrations

$ manage.py migrate admin

Operations to perform:
 Apply all migrations: admin
Running migrations:
 Applying admin.0003_logentry_add_action_flag_choices... OK

$ manage.py migrate

Operations to perform:
 Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:
 No migrations to apply.

13

 MIGRATIONS, UNDER THE HOOD
mydatabase# \d django_migrations
 Table "public.django_migrations"
 Column | Type
---------+-------------------------
 id | bigint
 app | character varying(255)
 name | character varying(255)
 applied | timestamp with time zone

14

 MIGRATIONS, UNDER THE HOOD
mydatabase=# select * from django_migrations;
 id | app | name
----+--------------+--
 1 | contenttypes | 0001_initial
 2 | auth | 0001_initial
 3 | admin | 0001_initial
 4 | admin | 0002_logentry_remove_auto_add
 5 | admin | 0003_logentry_add_action_flag_choices
 6 | contenttypes | 0002_remove_content_type_name
 7 | auth | 0002_alter_permission_name_max_length
 8 | auth | 0003_alter_user_email_max_length
 9 | auth | 0004_alter_user_username_opts
 10 | auth | 0005_alter_user_last_login_null
 11 | auth | 0006_require_contenttypes_0002
12 | auth | 0007 alter validators add error messages

15

 showmigrations
Shows all available migrations for the current project

manage.py showmigrations [app_label]

https://docs.djangoproject.com/en/4.2/ref/django-admin/#django-admin-showmigrations

16

https://docs.djangoproject.com/en/4.2/ref/django-admin/#django-admin-showmigrations

 showmigrations
$ manage.py showmigrations main

main
 [X] 0001_initial

17

 sqlmigrate
Prints the SQL statements for the named migration.
manage.py sqlmigrate app_label migration_name

https://docs.djangoproject.com/en/4.2/ref/django-admin/#django-admin-sqlmigrate

18

https://docs.djangoproject.com/en/4.2/ref/django-admin/#django-admin-sqlmigrate

 sqlmigrate
$ manage.py sqlmigrate main 0001

BEGIN;
--
-- Create model Tweet
--
CREATE TABLE "main_tweet" ("id" bigint NOT NULL PRIMARY KEY GE
ALTER TABLE "main_tweet" ADD CONSTRAINT "main_tweet_created_by
CREATE INDEX "main_tweet_created_by_id_de58f942" ON "main_twee
COMMIT;

19

 CHANGING MODELS

Edit model

Create migration

+++ main/models.py
 class Tweet(models.Model):
 created_by = models.ForeignKey(get_user_model(), on_delet
 created_at = models.DateTimeField(auto_now_add=True)
- text = models.CharField(max_length=140)
+ text = models.CharField(max_length=250)

$ manage.py makemigrations main

Migrations for 'main':
 main/migrations/0002_alter_tweet_text.py
 - Alter field text on tweet

20

 CHANGING MODELS

Inspect migration
main/migrations/0002_alter_tweet_text.py
class Migration(migrations.Migration):

 dependencies = [
 ("main", "0001_initial"),
]

 operations = [
 migrations.AlterField(
 model_name="tweet",
 name="text",
 field=models.CharField(max_length=250),
),
]

21

 CHANGING MODELS

Show SQL statement
$ manage.py sqlmigrate main 0002

BEGIN;
--
-- Alter field text on tweet
--
ALTER TABLE "main_tweet" ALTER COLUMN "text" TYPE varchar(250)
COMMIT;

22

 CHANGING MODELS

Apply migration
$ manage.py migrate main

Operations to perform:
 Apply all migrations: main
Running migrations:
 Applying main.0002_alter_tweet_text... OK

23

 FURTHER CHANGES?

24

 FURTHER CHANGES?
enabling tweet likes
(adding `Like` model)

24.1

 FURTHER CHANGES?
enabling tweet likes
(adding `Like` model)
enabling retweets
(nullable `text` field and `related_tweet` field)

24.2

 FURTHER CHANGES?
enabling tweet likes
(adding `Like` model)
enabling retweets
(nullable `text` field and `related_tweet` field)
forgot the `related_name` for `Like.tweet` field

24.3

 FURTHER CHANGES?
enabling tweet likes
(adding `Like` model)
enabling retweets
(nullable `text` field and `related_tweet` field)
forgot the `related_name` for `Like.tweet` field
enabling followers
(`Follow` model)

24.4

SHOW MIGRATIONS
$ manage.py showmigrations main

main
 [X] 0001_initial
 [X] 0002_alter_tweet_text
 [] 0003_like
 [] 0004_tweet_related_tweet_alter_tweet_text
 [] 0005_alter_like_tweet
 [] 0006_follow

25

 ADD shop APP
`Customer` model and shipping details

26

 ADD shop APP
`Customer` model and shipping details
adding `is_premium` field to `Customer` model

26.1

 ADD shop APP
`Customer` model and shipping details
adding `is_premium` field to `Customer` model
creating dedicated `ShippingAddress` model

26.2

 ADD shop APP
`Customer` model and shipping details
adding `is_premium` field to `Customer` model
creating dedicated `ShippingAddress` model
migrating data to new shipping addresses

26.3

 ADD shop APP
`Customer` model and shipping details
adding `is_premium` field to `Customer` model
creating dedicated `ShippingAddress` model
migrating data to new shipping addresses
removing Customer shipping fields
(one migration per field: state, province, city, zip code, address, name)

26.4

 FURTHER CHANGES?

27

 FURTHER CHANGES?
increasing length of `ShippingAddress` fields

27.1

 FURTHER CHANGES?
increasing length of `ShippingAddress` fields
adding `Order` model

27.2

 FURTHER CHANGES?
increasing length of `ShippingAddress` fields
adding `Order` model
adding `created_at` field to `Order` model

27.3

 FURTHER CHANGES?
increasing length of `ShippingAddress` fields
adding `Order` model
adding `created_at` field to `Order` model
adding `OrderLine` model and manager

27.4

 FURTHER CHANGES?
increasing length of `ShippingAddress` fields
adding `Order` model
adding `created_at` field to `Order` model
adding `OrderLine` model and manager
adding `customer_type` choice field
("Free" and "Premium")

27.5

 FURTHER CHANGES?
increasing length of `ShippingAddress` fields
adding `Order` model
adding `created_at` field to `Order` model
adding `OrderLine` model and manager
adding `customer_type` choice field
("Free" and "Premium")
adding `customer_type` migration from `is_premium`

27.6

 FURTHER CHANGES?
increasing length of `ShippingAddress` fields
adding `Order` model
adding `created_at` field to `Order` model
adding `OrderLine` model and manager
adding `customer_type` choice field
("Free" and "Premium")
adding `customer_type` migration from `is_premium`
removing is_premium field

27.7

 FURTHER CHANGES?
increasing length of `ShippingAddress` fields
adding `Order` model
adding `created_at` field to `Order` model
adding `OrderLine` model and manager
adding `customer_type` choice field
("Free" and "Premium")
adding `customer_type` migration from `is_premium`
removing is_premium field
adding more customer types
("Bronze", "Silver", "Gold", "Platinum")

27.8

 FURTHER CHANGES?
increasing length of `ShippingAddress` fields
adding `Order` model
adding `created_at` field to `Order` model
adding `OrderLine` model and manager
adding `customer_type` choice field
("Free" and "Premium")
adding `customer_type` migration from `is_premium`
removing is_premium field
adding more customer types
("Bronze", "Silver", "Gold", "Platinum")
renaming `product_quantity` to `quantity`

27.9

 FURTHER CHANGES?
increasing length of `ShippingAddress` fields
adding `Order` model
adding `created_at` field to `Order` model
adding `OrderLine` model and manager
adding `customer_type` choice field
("Free" and "Premium")
adding `customer_type` migration from `is_premium`
removing is_premium field
adding more customer types
("Bronze", "Silver", "Gold", "Platinum")
renaming `product_quantity` to `quantity`
adding Product model

27.10

 MIGRATIONS?
$ manage.py showmigrations shop
 [] 0001_initial
 [] 0002_customer_is_premium
 [] 0003_shippingaddress
 [] 0004_migrate_shipping_address
 [] 0005_remove_customer_shipping_state
 [] 0006_remove_customer_shipping_province
 [] 0007_remove_customer_shipping_city
 [] 0008_remove_customer_shipping_zip_code
 [] 0009_remove_customer_shipping_address
 [] 0010_remove_customer_shipping_name
 [] 0011_alter_shippingaddress_address_and_more
 [] 0012_order
 [] 0013_order_created_at
 [] 0014_orderline
 [] 0015_alter_customer_user
 [] 0016_customer_customer_type
 [] 0017_migrate_is_premium_to_customer_type
 [] 0018_remove_customer_is_premium
 [] 0019_alter_customer_customer_type
 [] 0020_alter_customer_customer_type
 [] 0021_alter_customer_customer_type
 [] 0022_alter_customer_customer_type
 [] 0023_alter_customer_customer_type
 [] 0024_alter_customer_customer_type
 [] 0025_rename_product_quantity_orderline_quantity
 [] 0026_product

28

 WHAT ABOUT PERFORMANCES?

29

DISCLAIMER

Timing may change from laptop to laptop.

30

 TEST PERFORMANCES

20x apps like shop
$ manage.py test

Found 152 test(s).
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
...

Ran 152 tests in 0.924s

OK
Destroying test database for alias 'default'...

31

 TEST PERFORMANCES

Command Execution time

Creating test database ~20s

Running tests ~1s

$ time manage.py test

Ran 152 tests in 0.845s
19.91s user 0.31s system 99% cpu 20.409 total

32

 A POSSIBLE WORKAROUND

preserve the test database between runs
if (the database) does not exist, it will first be created
migrations will also be applied in order to keep it up to date

$ manage.py test --keepdb

33

--keepdb pros and cons

 Saves ~20s for each test run a�er the first one

 Not easy to configure in CI/CD

cache/artifacts in GitHub workflows
external test DB

34

 ANOTHER WORKAROUND

Django settings

When set to False, migrations won’t run when creating the test database. This is similar to
setting None as a value in MIGRATION_MODULES, but for all apps.

MIGRATE = False # default to True

https://docs.djangoproject.com/en/4.2/ref/settings/#migrate

35

https://docs.djangoproject.com/en/4.2/ref/settings/#migrate

MIGRATE = False pros and cons

 Single line change in your codebase

 Doesn't run migrations during tests

 It's like makemigrations + migrate
before running tests

 ~+5s in our test repository

36

 PERFORMANCES
Creating test DB Running tests

Before ~20s ~1s

--keepdb ~0s ~1s

MIGRATE = False ~25s ~1s

37

 squashmigrations

Squash an existing set of migrations
into a single new one.

--no-optimize
disable the optimizer when generating a squashed migration.
Example: disable merge of AddField commands
placed right a�er a CreateModel for the same table

manage.py squashmigrations \
 [--no-optimize] # disable merging of CreateModel and AddF
 app_label [start_migration_name] migration_name

https://docs.djangoproject.com/en/4.2/ref/django-admin/#django-admin-
squashmigrations

38

https://docs.djangoproject.com/en/4.2/ref/django-admin/#django-admin-squashmigrations
https://docs.djangoproject.com/en/4.2/ref/django-admin/#django-admin-squashmigrations

 squashmigrations
Applied to shop app

$ python manage.py squashmigrations shop 0026

Will squash the following migrations:
 - 0001_initial
 - 0002_customer_is_premium
 - ...
 - 0026_product
Do you wish to proceed? [yN] y

39

 squashmigrations
Optimizing...
 Optimized from 29 operations to 27 operations.

Created new squashed migration 0001_squashed_0026_product.py
 You should commit this migration but leave the old ones in
 place; the new migration will be used for new installs.
 Once you are sure all instances of the codebase have
 applied the migrations you squashed, you can delete them.

Manual porting required
 Your migrations contained functions that must be manually
 copied over, as we could not safely copy their
 implementation.
 See the comment at the top of the squashed migration
 for details.

40

 squashmigrations
Inspecting migration file

0001_squashed_0026_product.py

Functions from the following migrations need manual copying.
Move them and any dependencies into this file, then update
the RunPython operations to refer to the local versions:
shop.migrations.0004_migrate_shipping_address
shop.migrations.0017_migrate_is_premium_to_customer_type

 migrations.RunPython(
- code=shop.migrations.0004_migrate_shipping_address.forwa
+ code=0004_forward_func,
- reverse_code=shop.migrations.0004_migrate_shipping_addre
+ reverse_code=0004_backward_func,
),

41

 squashmigrations
Inspecting migration file

class Migration(migrations.Migration):

 replaces = [
 ("shop", "0001_initial"),
 ("shop", "0002_customer_is_premium"),
 # ...
 ("shop", "0026_product"),
]

42

 RECOMMENDED PROCESS

1. squash, keeping the old files, commit and release

2. wait until all systems are upgraded with the new
release

3. remove the old migration files, commit and do a
second release

43

 RECOMMENDED PROCESS

4. transition the squashed migration to a normal
migration:

delete all the migration files it replaces

update all migrations that depend on the deleted
migrations to depend on the squashed migration
instead

remove the replaces attribute in the squashed
migration

44

New in Django 4.1.

PRUNING REFERENCES TO DELETED MIGRATIONS

If it is likely that you may reuse the name of a deleted
migration in the future, you should remove references

to it from Django’s migrations table with
manage.py migrate --prune

45

TEST PERFORMANCES AFTER SQUASHING

Creating test DB Running tests
Before ~20s ~1s

--keepdb ~0s ~1s

MIGRATE = False ~25s ~1s

A�er squashing ~20s ~1s

$ time manage.py test

Ran 152 tests in 0.948s
20.47s user 0.35s system 99% cpu 21.001 total

46

47

 WHAT'S THE POINT?

Move back
from having several hundred migrations

to just a few

48

49

Do you really want to speed up database creation in
tests?

Re-creating migrations from scratch and doing a lot of manual tasks?

50

 RECREATE MIGRATIONS

1. annotate migrations for a specific app
$ APP_LABEL=shop
$ manage.py showmigrations $APP_LABEL
shop
 [X] 0001_initial
 [X] 0002_customer_is_premium
 [X] 0003_shippingaddress
 # ...
 [X] 0026_product

51

 RECREATE MIGRATIONS

2. create a python list with this format
"shop" is the app_label
replaces = [
 ("shop", "0001_initial"),
 ("shop", "0002_customer_is_premium"),
 ("shop", "0003_shippingaddress"),
 # ...
 ("shop", "0026_product"),
]

52

 RECREATE MIGRATIONS

3. move migrations in a temporary directory

make sure that migrations are no longer there

$ mv $APP_LABEL/migrations $APP_LABEL/old_migrations

$ manage.py showmigrations $APP_LABEL
shop
 (no migrations)

53

 RECREATE MIGRATIONS

4. recreate first migration from scratch
using a different name than the old migration 0001

$ manage.py makemigrations $APP_LABEL --name=init_squashed
Migrations for 'shop':
 shop/migrations/0001_init_squashed.py
 - Create model Customer
 - Create model Order
 - Create model ShippingAddress
 - Create model Product
 - Create model OrderLine

54

 RECREATE MIGRATIONS

5. write the "replace" list in the new migration
 class Migration(migrations.Migration):

 initial = True

+ replaces = [
+ ("shop", "0001_initial"),
+ ("shop", "0002_customer_is_premium"),
+ ("shop", "0003_shippingaddress"),
+ # ...
+ ("shop", "0026_product"),
+]

 dependencies = [

55

 RECREATE MIGRATIONS

6. restore old migration files

remove the temporary directory

from command line with something like this
mv -i -v $APP_LABEL/old_migrations/*.py $APP_LABEL/migrations
check for missing/overwritten files!

rm -r $APP_LABEL/old_migrations

56

 RECREATE MIGRATIONS

7. ensure that old migrations are still there
$ manage.py showmigrations $APP_LABEL
shop
 [] 0001_init_squashed
 [X] 0001_initial
 [X] 0002_customer_is_premium
 # ...
 [X] 0026_product

57

 RECREATE MIGRATIONS

8. launch the migration command

ensure that squashed migration has been applied

$ manage.py migrate $APP_LABEL
Operations to perform:
 Apply all migrations: shop
Running migrations:
 No migrations to apply.

$ manage.py showmigrations $APP_LABEL
shop
 [X] 0001_init_squashed (26 squashed migrations)

58

 RECREATE MIGRATIONS

9. back to post-squash tasks
commit and release
upgrade all systems with the new release
remove old migration files, commit and do a second release
update all migrations that depend on the deleted migrations
remove the replaces attribute
(optional) prune references to deleted migrations

59

WHAT COULD POSSIBLY GO WRONG?

60

 MIGRATIONS PROVIDING INITIAL DATA

create a new migration file for that,
a�er recreating the initial migration

or (even better)

use fixtures

https://docs.djangoproject.com/en/4.2/howto/initial-data/

61

https://docs.djangoproject.com/en/4.2/howto/initial-data/

 CIRCULAR DEPENDENCIES

To manually resolve a CircularDependencyError, break out one of
the ForeignKeys in the circular dependency loop into a separate
migration, and move the dependency on the other app with it.

If you’re unsure, see how makemigrations deals with the problem
when asked to create brand new migrations from your models. In
a future release of Django, squashmigrations will be updated to

attempt to resolve these errors itself.

https://docs.djangoproject.com/en/4.2/topics/migrations/#squashing-migrations

62

https://docs.djangoproject.com/en/4.2/topics/migrations/#squashing-migrations

TEST PERFORMANCES AFTER RECREATING

Creating test DB Running tests

Before ~20s ~1s

--keepdb ~0s ~1s

MIGRATE = False ~25s ~1s

A�er squashing ~20s ~1s

A�er recreating ~5s ~1s

$ time manage.py test

Ran 152 tests in 0.988s
python manage.py test 5.12s user 0.21s system 82% cpu 6.485 t

63

64

THANK YOU!

django-settings-migrate branch ()
squashing-migrations branch ()
recreating-migrations branch ()

@dennybiasiolli

github.com/dennybiasiolli/django-squashmigrations-example

PR #4
PR #2

PR #3

www.dennybiasiolli.com

65

https://github.com/dennybiasiolli/django-squashmigrations-example
https://github.com/dennybiasiolli/django-squashmigrations-example/pull/4
https://github.com/dennybiasiolli/django-squashmigrations-example/pull/2
https://github.com/dennybiasiolli/django-squashmigrations-example/pull/3
https://www.linkedin.com/in/dennybiasiolli/
https://www.linkedin.com/in/dennybiasiolli/
https://github.com/dennybiasiolli
https://github.com/dennybiasiolli
https://t.me/dennybiasiolli
https://t.me/dennybiasiolli
https://www.instagram.com/dennybiasiolli/
https://www.instagram.com/dennybiasiolli/
https://twitter.com/DennyBiasiolli
https://twitter.com/DennyBiasiolli
https://www.dennybiasiolli.com/

