
Remediating 1000s of untracked 
vulnerabilities in nixpkgs

delroth — FOSDEM 2024



CVE-2023-4863

“A buffer overflow in libwebp which allows a 
malicious actor to potentially get code 
execution in software that displays a specially 
crafted image file. This impacts pretty much 
all web browsers, as well as other software 
which might process or display untrusted 
images (image editing software, email clients, 
chat clients, social media clients, etc.). 
Chrome has rated this vulnerability as critical 
severity and has indicated that they have 
evidence some actors are already exploiting it 

in the wild.”



Problem solved!



nixpkgs#254798

https://github.com/NixOS/nixpkgs/issues/254798




Vendoring





libwebp copies in nixpkgs?

libpng copies in nixpkgs?

libjpeg copies in nixpkgs?

zlib copies in nixpkgs?

116

237

253

761

Packages containing…

on nixpkgs-unstable, as measured on 2024-02-02, 
unfree and insecure packages excluded



Is this a problem?



libpng per version

2 1.2.7
2 1.5.23
2 1.6.18
4 1.6.2
4 1.6.22
4 1.6.23
4 1.6.25
4 1.6.28
4 1.6.35
6 1.2.57
7 1.6.36
12 1.6.29

12 1.6.34
14 1.5.10
16 1.2.56
16 1.5.26
27 1.6.38
28 1.2.59
33 1.7.0
100 1.6.40
104 1.6.39
196 1.6.37

release date: 2004-09-12
release date: 2012-03-29

release date: 2013-04-25



1844 Rust packages (has cargoDeps)

1149 locked to vulnerable dependencies (62%)

744 with high or critical severity vulnerabilities in dependencies (40%)

Some of it is nixpkgs's fault, most of it is upstream's fault…

Rust software analysis in nixpkgs



What is causing vendoring?

➔ We don't try to prevent it.

➔ Newer language ecosystems encourage it.

➔ We don't have the tooling to detect and measure it.



Policies & Documentation

Packages fetched from AppImages: 58 (excl. unfree)

Packages fetched from .deb files: 66 (excl. unfree)

Many of these could be built from source, but it's harder!

nixpkgs does not currently document a preference for building from source. Some 
other distros do, famously Debian.



Rust, Go, NPM, Java, .NET

Lockfiles sound great, except upstream doesn't keep them up to date.

The shift towards lockfile-based language ecosystems mean distros have limited 
ways to fix vulnerable dependency. Upstreams don't understand this, or don't care.

➔ nixpkgs is special: huge package set, containing software that would in many 
distros be relegated to community / unofficial repos.

➔ Users should be made more aware of the risks: knownVulnerable, etc.



Tooling

Until recently, no tooling to detect or measure vendoring in nixpkgs.

In the wake of CVE-2023-4863: github:delroth/grep-nixos-cache

➢ Via simple signatures (currently, strings), find vendoring of common libs.

WIP: github:delroth/nixpkgs-vendored-vulns-scan

➢ Focusing on language specific ecosystems and lockfiles.

https://github.com/delroth/grep-nixos-cache
https://github.com/delroth/nixpkgs-vendored-vulns-scan


Conclusion



Conclusion

With new tooling, we have a better idea of the scale of vendoring in nixpkgs.

It's not great.

This talk does not come with any immediate solutions that can be applied. But a 
combination of policy changes, tooling improvement, and better support for 
informing users of the maintenance status of software will likely be necessary.



Questions & Contact Info

Github: delroth

Matrix: @delroth:delroth.net

Mastodon: @delroth@delroth.net

Email: delroth@delroth.net

github:delroth/grep-nixos-cache
github:delroth/nixpkgs-vendored-vulns-scan

Thank you!

https://github.com/delroth
https://matrix.to/#/@delroth:delroth.net
https://mastodon.delroth.net/@delroth
mailto:delroth@delroth.net
https://github.com/delroth/grep-nixos-cache
https://github.com/delroth/nixpkgs-vendored-vulns-scan

