
A few limitations in the available
fs-related system calls…

Nick Kossifidis <mick@ics.forth.gr>

RISC-V for Cloud Services 2/

Contact: Dr. Manolis Marazakis
Organization: FORTH (Greece)
Email: maraz@ics.forth.gr

https://riser-project.eu

https://twitter.com/RiserProject

Integrated all-European Hardware and Open-Source
Software

for Cloud Services and Applications RISER (RISC-V for Cloud Services) – CompContinuum Workshop – HiPEAC’24 (Jan. 19, 2024)

https://riser-project.eu/
https://twitter.com/RiserProject

Copying a file…

● Preserve file data
○ Time efficiency
○ Space efficiency

● Preserve file metadata
○ Permission bits
○ Ownership (user/group)
○ Timestamps
○ Old school attributes
○ Extended attributes

System calls for copying data…

● The naive approach: open(), read(), write(), close()
○ The most generic/portable way but very inefficient
○ Datapath goes through userspace, kernel copies to user on read, from user on write

● Using sendfile()
○ Linux, FreeBSD (thank you Netflix !)
○ Copying is done in-kernel, without going through userspace
○ Uses a temporary buffer: source -> buffer (pipe) -> dest
○ Probably the most common technique used today

● Using copy_file_range()
○ Linux-only
○ Takes advantage of fs features (e.g. COW, REFLINK, NFS server-side copy etc), and in the future will

also take advantage of hw features (e.g. NVme simple copy)
○ This is meant to be the new/default API for this

● Preserve holes on sparse files: lseek(SEEK_DATA/SEEK_END), ftruncate()

System calls for preserving metadata…

● Permission bits using {f}chmod{at}()
● Ownership using {f,l}chown{at}()
● atime/mtime using utimens{at}()
● Preserve old-style 32bit attributes mask using ioctl(FS_IOC_{G,S}ETFLAGS)

System calls for preserving metadata…

● Extended attributes (key:value pairs), using {list,set,get}xattr()
○ "POSIX" ACLs (acl(7)): system.posix_acl_access/default
○ NFSv4 ACLs (honored by the nfs client): system.nfs4acl/nfs4_acl
○ Inline-data (ext4(5)): system.data
○ Per-file capabilities (capabilities(7)): security.capability
○ SELinux file contexts: security.selinux/security.sehash
○ AppArmor labels (apparmor_xattrs(7)): e.g. security.apparmor
○ SMACK attributes: security.SMACK64*
○ Integrity measurement: security.evm/security.ima
○ Privileged userspace stuff: trusted.*
○ Unprivileged userspace stuff: user.*
○ and more…
○ Honor /etc/xattrs.conf, that includes xattr patterns to skip

Issues so far…

● copy_file_range() may expand holes on sparse files
● No io_uring op for sendfile() / copy_file_range()
● The {at} system call variants (using O_PATH descriptors) are very useful !

○ But there are no {list,set,get}xattrat() syscalls !
○ fchmodat() doesn’t support the AT_EMPTY_PATH flag -> Fixed on 6.6 with fchmodat2()
○ utimensat() does support AT_EMPTY_PATH but the man page doesn’t mention it

● IMHO There should be a single API for file attributes, having to use ioctl()
doesn’t look nice.

● No registry of xattrs used by the kernel, more documentation is needed !
Multiple xattrs cannot be set through xattr API.

Capabilities required for backup…

● For read access to files we don’t own: CAP_DAC_READ_SEARCH
● For preserving special files (devices/sockets etc): CAP_MKNOD
● For preserving ownership: CAP_CHOWN
● For chmod/utimens, attrs, most xattrs, using O_NOATIME etc: CAP_FOWNER

○ If we have CAP_CHOWN we can skip this, we can preserve all we can and then change owner
● For the APPEND/IMMUTABLE attr: CAP_LINUX_IMMUTABLE
● For security.capabilities: CAP_SETFCAP
● For security/trusted xattrs: CAP_SYS_ADMIN -> That’s overkill !
● This is confusing and inconsistent !

When to backup a file…

● We can track data changes through mtime/size and compare between src/dst
○ But this is insecure/unreliable.
○ Rsync does crc32 which is still insecure, we could do e.g. SHA on both src/dst but that also has

a serious overhead.
○ We could use IMA (security.ima) but that’s not available over NFS.
○ We could compare ctime to make sure that mtime wasn’t modified since our last backup but we

can’t preserve ctime on dst to do the comparison !

● We can’t track metadata changes without reading them all (including all xattrs) !
○ Also because ctime cannot be preserved on dst, so we can’t compare it with src.

On preserving ctime for comparison…

● Why are we able to preserve atime/mtime and not ctime ?
○ There is a chicken-and-egg issue, since changing ctime should also update ctime
○ It’s the most reliable way to determine if a file’s data/metadata changed, better let the kernel

handle it
● But there are ways around this for privileged users

○ One can set the system time and force a ctime update by performing a modification on
data/metadata

○ It’s possible to modify the data on-disk, like I did for example with ext4backup
(https://github.com/mickflemm/ext4backup)

○ It could even be done without unmounting the partition, using fsfreeze.
● And in some cases it’s not maintained in a consistent way e.g. for networked

file systems (look for S_NOCTIME).
● So why not have a privileged API (e.g. a flag on utimens{at} or something new,

with a proper capability e.g. CAP_CTIME) ?

https://github.com/mickflemm/ext4backup

What about btime/crtime ?

● It’s probably more useful as it is, no need to preserve it.
○ There are cases where a file will be re-created on edit (e.g. vi does that) so btime/crtime says

nothing about when the file’s contents were created.
○ We could however have a standard xattr for file content creation (in case it’s not supported by

the file format).

● BTW NFS server exports btime/crtime but NFS client doesn’t use it.

Backing up encrypted files…

● With eCryptfs -> just copy the encrypted files (and ~/.ecryptfs etc)
● With fscrypt -> Not possible !

○ We can use statx to see if a file/dir/symlink is encrypted (STATX_ATTR_ENCRYPTED)
○ We can determine if the required key is present (so that we can copy them unencrypted)

■ For regular files we can try to open() them and fail with ENOKEY
■ For dirs we can do an ioctl()
■ For symlinks -> Not possible !

○ No way to copy data in encrypted form !

Summary…

● Add {list,set,get}xattrat() syscalls.
● Wrap old attrs as xattrs so that we don’t use ioctl(FS_IOC_{G,S}ETFLAGS) and have a

common API for all attributes.
● Add a flag to copy_file_range() to preserve holes on sparse files, and also make it a

io_uring op.
● Document all special xattrs / those used/set by the kernel, and the required

capabilities to get/set them. Maybe also a new capability to set security/trusted xattrs
without requiring CAP_SYS_ADMIN.

● Come up with a way to get a file’s measurement (or even just a hash of its
data/metadata, as long as it’s only the kernel that can set it) without having to read
the whole thing in userspace, that works over NFS.

● Come up with a privileged API to preserve ctime.
● Come up with an API for backing up fscrypt files in encrypted form.

Questions ?

Thank you !

