Enhancing OCPP with E2E-Security and Binary Data Streams

...for a more secure energy ecosystem
/me

- Studied Computer Science (medical CS, network security) at TU Ilmenau, Germany
- Developing the student campus network, e.g. WLAN Point-to-Point links
- Worked for multiple startups (GraphDBs, Renewables, e-Health, PV, EV, ...)
- Started my own Open Source & Open Data company in 2014
A dedicated HTTPS Web Socket connection between multiple Charging Stations (CS) and a single Charging Station Management System (CSMS)
Local Networking

(Local Proxy in OCPP v2.0.1)

- Networking Node (NN) just shares the Internet uplink
- Improved network efficiency, lowers monthly costs
- New OCPP commands for network management (optional)
- Charging Stations also offer HTTP Web Socket Access (optional)
Local Controller (LC) might have own energy meter(s) for monitoring the Grid Connection Point (GCP)

✓ LC in charge of the Dynamic Load Management (DLM)

✓ LC connected to a Smart Meter Gateway (SMGW, Germany)
Duplication of separate HTTPS Web Socket connections caused by OCPP protocol limitations

⚠️ Security and privacy issues arise, as HTTPS/TLS is no longer sufficient for end-to-end security!
Marketing-in-the-Middle

- Web Socket is one (Micro) Service, CSMS is another
- Might even be operated by different companies
- Spying for analytics while connecting to 1…n “black box” CSMSs
- More duplications, more security, privacy & H/A issues
Shared Web Socket Connections

- A single shared HTTP Web Socket connection
- Improved network efficiency, less load in the backend
- An improved OCPP Transport Protocol is required
- Other protocols like MQTT or kafka are possible
Improved OCPP Transport Protocol

```
[ 2, // MessageType: CALL (Client-to-Server)
   "19223201", // RequestId
   "BootNotification", // Action
   {
     "chargingStation": { ... },
     "reason": "FirmwareUpdate"
   }
]
```

Network Source Path
- Record of the Route taken
- Implicit Hop Count
- Implicit Loop Detection

Additional routing information within the JSON transport array
New OCPP Overlay Networking

Routing tables in every node

"AutoLearn" and Gossip based exchange of routing information

Any-/Multicast: Instead of sending data to boxes, we address services
Monoliths → Multiple Micro Services of different operators

Each service might have its own Role Based Access Control (RBAC)

Security and privacy issues arise everywhere!

Traditional OCPP security model is no longer sufficient!
Signed Messages and Data

Signatures are part of the OCPP requests, responses or data structures (in contrast to OCPP v2.0.1 transport layer signatures)

- 0...n signatures allowed
- Signatures over different data representations
- Additional meta data within signatures to be more user friendly
Signature Policies

OUT Which signatures must be generated for which request/response, using which data (representation) and private key?

IN Which request/response is expected to be signed by which public key(s)? Which signatures, public key chains and rules must be verified?
User Roles for OCPP

• A user role is a collection of OCPP requests having the same security level
 \((\text{admin, tech, operations, ...})\)

• A user role defines a collection of public keys allowed to invoke the specified **OCPP Requests**
 \((\text{Later maybe down to the values of request parameters})\)

• The user role defines which public key can read, write, ... variables of the **OCPP Device Model**
 \((\leftrightarrow \text{Siemens proposal})\)
Binary Data Streams

- Using HTTPS Web Socket binary frames
- Generic File Transfer commands: SendFile, GetFile, ...
- Safer Firmware uploads, LogFile downloads, ... as those use external HTTP(s) requests which expose network security risks
- Used for encrypted/tunneled OCPP commands
- Large transfers need a proper message priority scheduling!
Nice, but why?

Many new End-to-End Communication Use Cases
German §14a Grid Load Management

Distribution System Operator reduces the energy consumption

- Regulatory operation based on §14a EnWG (Germany)
- Very complex and “high” security demands (➔ SMGWs 😈)
- Mandatory secure & transparent information of the CPO/EV driver

Reduce to 6 KW in 1 hour, for 6 hours!
German §14a Grid Load Management (vNEXT)

Direct communication between DSO, transparency and CSMS

- Avoids infrastructure duplication, reduces complexity, safes costs

But for this we need significant security & robustness improvements
Sending regular measurements for grid load management is a regulated service in Germany (SMGWs et.al)
Secure & Efficient Sensor Data Streams

- OCPP v2.1 already defines Periodic Event Streams
- We extent this to Binary Periodic Event Streams
- We also define a generic "Modbus Transport (Tunnel)" for secure remote access of e.g. Smart Meters via an OCPP Overlay Network
Charging Tariffs under AFIR

• EV driver must be informed about prices before, during and after a charging session

• Tariffs need to be digital, immutable and signed and available on transparency platforms (This will solve some major German Eichrecht problems)

• OCPP v2.1 will support OCPI++ tariff data structures, but currently without end-to-end-semantics
Ad hoc charging under AFIR

- Anonymous EV driver scans a dynamic QR code for payments...
- Why not a signed QR code to access a remote display of the charging station? EV drivers want to control their charging sessions via smartphone anyway!
- Some proprietary solutions already exist within the market, but all have regulatory, security and privacy issues!
Digital Charging Station Twins

• The CSMS is no longer the “single source of truth”

• CPOs/vendors often do not really know what’s going on and neither AI, nor séances can not solve missing communication and consensus in distributed systems

• As OCPP does not provide a generic way to share all information/state changes in a secure way → Often vendor backdoors are used

• Like a “remote display” for internals, diagnostics, ...
A Better German Calibration Law

- Timestamp
- MeterId
- UserId or SessionId
- Meter Value
- Public Key

Charge Detail Record (CDR)
- Start-/Stop Time
- Start-/Stop Meter Value
- Location Information
- Tariff Information
- Session Information

Charging Station

Smart Meter

Signed Meter Values

Charging Station Operator

E-Mobility Provider

- Crypto Signature

Transparency Software

- Transparency as legally binding “remote display” for the validation of older (public) charging sessions

- Additional meta data should also be signed, e.g. tariffs, load reductions!
National Contact Points

Delivery of **POI**, **statistical** & **real-time data** for publicly funded CSs

- **NCP as “just another” service within the Overlay Network**
- **No security, privacy or consistency requirements yet defined**
- **Anyway, it would be useful to send only authentic/signed data**
We can not trust anything coming from computers on the street!

Also content & contextual integrity of messages must be validated

Small project how to secure against insider attacks by
How to get this into “the market”?

- All these OCPP extensions are/will be available as “Open Source Vendor Extensions” on GitHub

- OCA Technical Working Group has a very conservative approach on “backward compatibility” and dislikes “breaking” changes :-(

- As usual: Many leechers, very few real contributors
 → Become an OCA member to improve the situation ;}

Questions?

- https://open.charging.cloud
- https://open.charging.community