
Maros Orsak

Senior Software Quality

Engineer Redhat

Immortal Dota 2

Henrich Zrncik

Software Quality Engineer

RedHat

Warlock lvl 70

Chaos Engineering in

Action:

 Enhancing Resilience in

Strimzi

Quiz

Content

1. Chaos Engineering
2. Target Systems
3. Designing Chaos (Experiments)
4. Demo (Simplified)
5. Conclusion

Quiz

System’s resilience
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Application1

System’s resilience
 Chaos Engineering Target System Design Chaos Demo Wrapping up

 Other Services3

Application1

Components 2

 Other Services3

Application1

Components 2

Infrastructure5

Network 4

1. - The network is reliable.
2. - Latency is zero.
3. - Bandwidth is infinite.
4. - The network is secure.
5. …

Fallacies of Distributed Systems - L. Peter Deutsch

"Nonsense...And what's
more, it doesn't rhyme. All
decent predictions rhyme."
- G. of R.

System’s resilience
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Chaos Origin
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Experimenting on a system in order to build
confidence in the system’s capability to withstand
turbulent conditions in production.

Definition
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Experimenting on a system in order to build
confidence in the system’s capability to withstand
turbulent conditions in production.

Definition
 Chaos Engineering Target System Design Chaos Demo Wrapping up

What is the benefit ?

Experimenting on a system in order to build
confidence in the system’s capability to withstand
turbulent conditions in production.

Definition
 Chaos Engineering Target System Design Chaos Demo Wrapping up

 Minimal blast
radius

Principles
 Chaos Engineering Target System Design Chaos Demo Wrapping up

 Minimal blast
radius

Run in
production

Hypothesis
around steady

state

Wary real
world’s
events

Principles
 Chaos Engineering Target System Design Chaos Demo Wrapping up

 Minimal blast
radius

Run in
production

Hypothesis
around steady

state

Automatized
Continuous

run

Wary real
world’s
events

Principles
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Architectural shift (timeline)

Monolith

Low
complexity

1313

 Chaos Engineering Target System Design Chaos Demo Wrapping up

Monolith

Hard to scale
horizontally

1414

Architectural shift (timeline)
 Chaos Engineering Target System Design Chaos Demo Wrapping up

1515

Monolith

Hard to scale
horizontally

Hard to scale
horizontally

Hard to scale
horizontally

Architectural shift (timeline)
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Monolith

Fault tolerant

1616

Architectural shift (timeline)
 Chaos Engineering Target System Design Chaos Demo Wrapping up

+ low complexity
- load balancing
- hard to scale horizontally
- fault tolerant, cost

1717

Monolith

Docker

+ portability, testing
+ - horizontal scaling
- complexity increases
- management deployments

Isolation

Portability

Horizontal scaling

Complexity increases

Architectural shift (timeline)
 Chaos Engineering Target System Design Chaos Demo Wrapping up

+ low complexity
- load balancing
- hard to scale horizontally
- fault tolerant, cost

1818

Monolith

Docker

+ portability, testing
+ - horizontal scaling
- complexity increases
- management deployments

Kubernetes

+ easy to scale horizontally
+ management of resources
- complexity increases again!

+ easy to scale horizontally
+ management of resources
- complexity increases again!

 easy to scale
horizontally

Replicas: 1

Architectural shift (timeline)
 Chaos Engineering Target System Design Chaos Demo Wrapping up

+ low complexity
- load balancing
- hard to scale horizontally
- fault tolerant, cost

1919

Monolith

Docker

+ portability, testing
+ - horizontal scaling
- complexity increases
- management deployments

Kubernetes

+ easy to scale horizontally
+ management of resources
- complexity increases again!

+ easy to scale horizontally
+ management of resources
- complexity increases again!

 easy to scale
horizontally

Replicas: 3

Architectural shift (timeline)
 Chaos Engineering Target System Design Chaos Demo Wrapping up

+ low complexity
- load balancing
- hard to scale horizontally
- fault tolerant, cost

2020

Monolith

Docker

+ portability, testing
+ - horizontal scaling
- complexity increases
- management deployments

Kubernetes

+ easy to scale horizontally
+ management of resources
- complexity increases again!

+ easy to scale horizontally
+ management of resources
- complexity increases again!

fault tolerant

Replicas: 3

Architectural shift (timeline)
 Chaos Engineering Target System Design Chaos Demo Wrapping up

+ low complexity
- load balancing
- hard to scale horizontally
- fault tolerant, cost

2121

Monolith

Docker

+ portability, testing
+ - horizontal scaling
- complexity increases
- management deployments

Kubernetes

+ easy to scale horizontally
+ management of resources
- complexity increases again!

+ easy to scale horizontally
+ management of resources
- complexity increases again!

complexity increases
again!

Architectural shift (timeline)
 Chaos Engineering Target System Design Chaos Demo Wrapping up

+ low complexity
- load balancing
- hard to scale horizontally
- fault tolerant, cost

2222

Monolith

Docker

+ portability, testing
+ - horizontal scaling
- complexity increases
- management deployments

Kubernetes

+ easy to scale horizontally
+ management of resources
- complexity increases again!

+ easy to scale horizontally
+ management of resources
- complexity increases again!

+ easy to scale horizontally
+ management of resources
+ fault tolerant
- complexity increases again!

OperatorsOperators

No single person can
grasp the entire

system!

Architectural shift (timeline)
 Chaos Engineering Target System Design Chaos Demo Wrapping up

+ low complexity
- load balancing
- hard to scale horizontally
- fault tolerant, cost

2323

Monolith

Docker

+ portability, testing
+ - horizontal scaling
- complexity increases
- management deployments

Kubernetes

+ easy to scale horizontally
+ management of resources
- complexity increases again!

+ easy to scale horizontally
+ management of resources
- complexity increases again!

+ easy to scale horizontally
+ management of resources
+ fault tolerant
- complexity increases again!

OperatorsOperators

No single person can
grasp the entire

system!

where one of such
operators is…

Architectural shift (timeline)
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Strimzi

Cloud Native Computing
Foundation

Simplifies upgrades of

Kafka clusters
Horizontal
Scaling

Dynamic
configuration

Security

Tracing

Grafana
dashboards

 Chaos Engineering Target System Design Chaos Demo Wrapping up

Cloud Native Computing
Foundation

Simplifies upgrades of

Kafka clusters
Horizontal
Scaling

Dynamic
configuration

Security

Tracing

Grafana
dashboards

Strimzi
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Cloud Native Computing
Foundation

Simplifies upgrades of

Kafka clusters
Horizontal
Scaling

Dynamic
configuration

Security

Tracing

Grafana
dashboards

Strimzi
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Too much
unknowns…right…let’s break
this down…

Messaging system

Commit log service

Publish subscribe model

distributed event streaming platform

Fault tolerant

Apache Kafka
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Messaging system

Commit log service

Publish subscribe model

distributed event streaming platform

Fault tolerant

Apache Kafka
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Messaging system

Commit log service

Publish subscribe model

distributed event streaming platform

Fault tolerant

Apache Kafka
 Chaos Engineering Target System Design Chaos Demo Wrapping up

This does not
help…
So let’s move to
basics of the
Kafka…

Producers

Kafka
broker

Another
Kafka
broker

Consumers

Apache Kafka
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Kafka broker
Producer

Kafka
Topics

Consumer

server.config

Apache Kafka
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Apache Kafka

Preferred leader
Leader election

KRaft Controller
nodes

ZooKeeper-based Kafka

Quorum

Consumer groups
Follower

Kafka Connect
Kafka Streams

Kafka Mirror Maker

And more…

Replication factor

 Chaos Engineering Target System Design Chaos Demo Wrapping up

Preferred leaderLeader election

KRaft Controller
nodes

ZooKeeper-based Kafka

Quorum

Consumer groups
Follower

Kafka Connect
Kafka Streams

Kafka Mirror Maker

And more…

Apache Kafka
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Kafka
broker

Producers Consumers

What if we?

Apache Kafka
 Chaos Engineering Target System Design Chaos Demo Wrapping up

encapsulate
such system
in Kubernetes

Operators
managing Kafka
ecosystem
(Kafka clusters)

Strimzi
 Chaos Engineering Target System Design Chaos Demo Wrapping up

encapsulate
such system
in Kubernetes

Operators
managing Kafka
ecosystem
(Kafka clusters)

Strimzi
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Complexity is really high

Cluster operator

source Kafka
cluster

Kafka
connect

Kafka Mirror
Maker

Topic and User
operator

target Kafka
cluster

Database

Strimzi
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Complexity is really high

Cluster operator

source Kafka
cluster

Kafka
connect

Kafka Mirror
Maker

Topic and User
operator

target Kafka
cluster

Database

Strimzi
 Chaos Engineering Target System Design Chaos Demo Wrapping up

… to the production …

Production environment for
Strimzi and other projects.

thanks to these guys we are
able to run Strimzi in testing
production environment…

39

skodjob

 Chaos Engineering Target System Design Chaos Demo Wrapping up

skodjob

Kafka
MirrorMaker

Kafka Clients

Producers

Consumers

Streams

Kafka
MirrorMaker

Kafka A Kafka B

Kafka
Connect

Databases Kafka Clients

Consumers

Kafka C

40

 Chaos Engineering Target System Design Chaos Demo Wrapping up

Chaos Experiment - Intuition

Kafka
MirrorMaker

Kafka Clients

Producers

Consumers

Streams

Kafka
MirrorMaker

Kafka A

Kafka
Connect

Databases Kafka Clients

Consumers

Kafka C

41

Kafka B

 Chaos Engineering Target System Design Chaos Demo Wrapping up

1. Observability

"Without observability, you don’t
have ‘chaos engineering’. You
just have chaos.” Charity M.

Chaos Experiment - Intuition
 Chaos Engineering Target System Design Chaos Demo Wrapping up

1. Observability
2. Hypothesis (search)

- Critical components
- Bottlenecks, network
- Real world events

Chaos Experiment - Hypothesis
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Chaos Experiment - Document

Topic Operator
Config:

- Unidirectional
- Bidirectional

Chaos:
- Network …

Containers
Notes:

- m containers
per pod in …

- JVM

Clients
Config:

- Producer
- Consumer
- Streams, Http

Chaos:
- Http, Network,

DNS
Params:

- acks
- retries
- connections.max

.idle

Bridge
Chaos:

- Http
- Network
- Pod

Notes:
- Http client only

Infrastructure
Chaos:

- DNS
- Network
- Node

Kafka
Config:

- Kraft
- Zookeeper

Params:
- Replicas
- Global configs
- Ephemeral vs

Persistent
Chaos:

- Pod
- Network

Mirror Maker & Kafka Connect
Params:

- Different DBs (MySQL, Mongo …)
- Connector Type, Tasks/workers

Zookeeper & Kraft
Params:

- Quorum necessary
- metadata

Component
Config:
 - - - - -
 - - -
Variables/Param:
 - - - - - - -
 - - - - - - -
Chaos:
 - - - - -
 - - - - - - - - -
Notes:
 - - - - - -
 - - - - - - - - Others

- …

 Chaos Engineering Target System Design Chaos Demo Wrapping up

1. Observability
2. Hypothesis (search)

- Critical components
- Bottlenecks, network
- Real world events

Chaos Experiment - Hypothesis
 Chaos Engineering Target System Design Chaos Demo Wrapping up

1. Observability
2. Hypothesis (formulate)

Chaos Experiment - Hypothesis
 Chaos Engineering Target System Design Chaos Demo Wrapping up

1. Observability
2. Hypothesis (formulate)

Chaos Experiment - Hypothesis
 Chaos Engineering Target System Design Chaos Demo Wrapping up

1. Observability
2. Hypothesis (formulate)

1. Observed metrics:
a. Incoming traffic metrics
b. Ready brokers
c. CPU used, memory

2. Hypothese: (Production system) Kafka cluster
can withstand failure of 3 brokers without loss of
messages or cascading fails.

Chaos Experiment - Hypothesis
 Chaos Engineering Target System Design Chaos Demo Wrapping up

1. Observed metrics:
a. Incoming traffic metrics
b. Ready brokers
c. CPU used, memory

2. Hypothese: (Production system) Kafka cluster
can withstand failure of 3 brokers without loss of
messages or cascading fails.

1. Observability
2. Hypothesis
3. Scale (down & up)

Chaos Experiment - Scale
 Chaos Engineering Target System Design Chaos Demo Wrapping up

1. Observability
2. Hypothesis
3. Scale

Chaos Experiment - Timeline
 Chaos Engineering Target System Design Chaos Demo Wrapping up

1. Observability
2. Hypothesis
3. Scale

Chaos Experiment - Timeline

t1

3

 Chaos Engineering Target System Design Chaos Demo Wrapping up

t

Brokers up

1. Observability
2. Hypothesis
3. Scale

Chaos Experiment - Timeline
 Chaos Engineering Target System Design Chaos Demo Wrapping up

t
t1 t2

3 3

t1 t2

3 3

Brokers up

Chaos Experiment - Timeline
 Chaos Engineering Target System Design Chaos Demo Wrapping up

t
t1 t2

3 3

t1 t2

3 3

Brokers up

1. Observability
2. Hypothesis
3. Scale

1. Observability
2. Hypothesis
3. Scale

Chaos Experiment - Timeline
 Chaos Engineering Target System Design Chaos Demo Wrapping up

t
t1 t2

3 3

t1 t2

3 3

Brokers up

t3 t4

2 2

Brokers up

1. Observability
2. Hypothesis
3. Scale

Chaos Experiment - Timeline

t1 t2 t3 t4 t5 t6

3 2 2 33 3

 Chaos Engineering Target System Design Chaos Demo Wrapping up

t
t1 t2 t3 t4 t5 t6

3 2 2 33 3

1. Observability
2. Hypothesis
3. Scale

Chaos Experiment - Scale

200

400

600

800

1000

t1 t2 t3 t4 t5 t6

Msg/s

3 2 2 33 3

Msg/s
Brokers

up

 Chaos Engineering Target System Design Chaos Demo Wrapping up

t

1. Observability
2. Hypothesis
3. Scale
4. Run & Results

Chaos Experiment - Tools

200

400

600

800

1000

t1 t2 t3 t4 t5 t6

Msg/s

3 2 2 33 3

Msg/s
Brokers

up

 Chaos Engineering Target System Design Chaos Demo Wrapping up

t

1. Observability
2. Hypothesis
3. Scale
4. Run & Results

Chaos Experiment - Tools

Evaluate

Rep
ea

t Execute

Define

200

400

600

800

1000

t1 t2 t3 t4 t5 t6

Msg/s

3 2 2 33 3

Msg/s
Brokers

up

 Chaos Engineering Target System Design Chaos Demo Wrapping up

t

1. Observability
2. Hypothesis
3. Scale
4. Run & Results

Chaos Experiment - Tools

Evaluate

Rep
ea

t Execute

Define

200

400

600

800

1000

t1 t2 t3 t4 t5 t6

Msg/s

3 2 2 33 3

Msg/s
Brokers

up

kind: PodChaos
metadata:
 name: broker-kill-66
spec:
 action: pod-kill
 mode: one
 selector:
 namespaces:
 - kafka-main
 labelSelectors:
. . .

 Chaos Engineering Target System Design Chaos Demo Wrapping up

t

1. Observability
2. Hypothesis
3. Scale
4. Run & Results

Chaos Experiment - Tools

Evaluate

Rep
ea

t Execute

Define

200

400

600

800

1000

t1 t2 t3 t4 t5 t6

Msg/s

3 2 2 33 3

Msg/s
Brokers

up

kind: PodChaos
metadata:
 name: broker-kill-66
spec:
 action: pod-kill
 mode: one
 selector:
 namespaces:
 - kafka-main
 labelSelectors:
. . .

 Chaos Engineering Target System Design Chaos Demo Wrapping up

t

1. Observability
2. Hypothesis
3. Scale
4. Run & Results

Chaos Experiment - Run

200

400

600

800

1000

t1 t2 t3 t4 t5 t6

Msg/s

3 2 2 33 3

Msg/s
Brokers

up

kind: PodChaos
metadata:
 name: broker-kill-66
spec:
 action: pod-kill
 mode: one
 selector:
 namespaces:
 - kafka-main
 labelSelectors:
. . .

 Chaos Engineering Target System Design Chaos Demo Wrapping up

t

Chaos Experiment - Results

200

400

600

800

1000

t1 t2 t3 t4 t5 t6

Msg/s

3 2 2 33 3

Msg/s
Brokers

up

kind: PodChaos
metadata:
 name: broker-kill-66
spec:
 action: pod-kill
 mode: one
 selector:
 namespaces:
 - kafka-main
 labelSelectors:
. . .

type Traffic_in (msg/s) replicas_down_to Duration (m) result

chaos-66 650 (670 base) 2/3 6 ✅

 Chaos Engineering Target System Design Chaos Demo Wrapping up

Chaos Experiment - Repeat

0
200
400
600
800

t1 t3 t4 t5 t6
3

 t7 t8 t9
3 2 2 3 3 3 3 3

t2

0
 6000
12000
18000
24000

t1 t3 t4 t5 t6

6

 t7 t8 t9

6

t2

4 4 5
2 2 3 2

 Chaos Engineering Target System Design Chaos Demo Wrapping up

Demo I: Broker(s) failure
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Description: Fail of critical component Pod(s).

Observability: Ensure the availability of metrics for
CPU, memory, and traffic in Kafka Pods.

Demo I: Broker(s) failure
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Description: Fail of critical component Pod(s).

Observability: Ensure the availability of metrics for
CPU, memory, and traffic in Kafka Pods.

Steady State: All broker and client replicas are up
and ready, with communication throughput stable and
free of spikes

Clients Kafka

Demo I: Broker(s) failure
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Description: Fail of critical component Pod(s).

Observability: Ensure the availability of metrics for
CPU, memory, and traffic in Kafka Pods.

Steady State: All broker and client replicas are up
and ready, with communication throughput stable and
free of spikes

Hypothesis: Eliminating three out of seven
brokers will not result in cascading failures, and
user impact will be minimal. Throughput may
significantly decrease but should not drop to
zero, and the disruption should not last longer
than the time required to respawn lost instances
(approximately 1 minute).

Clients Kafka

Demo I: Broker(s) failure
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Description: Fail of critical component Pod(s).

Observability: Ensure the availability of metrics for
CPU, memory, and traffic in Kafka Pods.

Steady State: All broker and client replicas are up
and ready, with communication throughput stable and
free of spikes

Hypothesis: Eliminating three out of seven
brokers will not result in cascading failures, and
user impact will be minimal. Throughput may
significantly decrease but should not drop to
zero, and the disruption should not last longer
than the time required to respawn lost instances
(approximately 1 minute).

Clients Kafka

Demo I: Broker(s) failure
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Description: Fail of critical component Pod(s).

Observability: Ensure the availability of metrics for
CPU, memory, and traffic in Kafka Pods.

Steady State: All broker and client replicas are up
and ready, with communication throughput stable and
free of spikes

Hypothesis: Eliminating three out of seven
brokers will not result in cascading failures, and
user impact will be minimal. Throughput may
significantly decrease but should not drop to
zero, and the disruption should not last longer
than the time required to respawn lost instances
(approximately 1 minute).

Checks:
● All Kafka Pods Ready
● All produced messages consumed

Clients Kafka

https://docs.google.com/file/d/1a8QDXTSofF7tED9ufx_OXTyURJaHJQys/preview

Demo II: Worker node crash
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Description: Crash of a worker node effect on services (Kafkas
and Mirror Maker).

Observability: Ensure the availability of all services across the
cluster; monitor for any unexpected events within the cluster.

Demo II: Worker node crash
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Kafka
MirrorMaker

Kafka A

Kafka B

Kafka Consumers

Kafka Producers
Description: Crash of a worker node effect on services (Kafkas
and Mirror Maker).

Observability: Ensure the availability of all services across the
cluster; monitor for any unexpected events within the cluster.

Demo II: Worker node crash
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Kafka
MirrorMaker

Kafka A

Kafka B

Kafka Consumers

Kafka Producers
Description: Crash of a worker node effect on services (Kafkas
and Mirror Maker).

Observability: Ensure the availability of all services across the
cluster; monitor for any unexpected events within the cluster.

Steady State: All services are fully available and ready to
accept traffic.

Description: Crash of a worker node effect on services (Kafkas
and Mirror Maker).

Observability: Ensure the availability of all services across the
cluster; monitor for any unexpected events within the cluster.

Steady State: All services are fully available and ready to
accept traffic.

Hypothesis: Eliminating one of the Kubernetes worker pools
will not bring down any services, even temporarily. The cluster
will recover, and within a reasonable time period, all services
will return to their full replica count.

Demo II: Worker node crash
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Description: Crash of a worker node effect on services (Kafkas
and Mirror Maker).

Observability: Ensure the availability of all services across the
cluster; monitor for any unexpected events within the cluster.

Steady State: All services are fully available and ready to
accept traffic.

Hypothesis: Eliminating one of the Kubernetes worker pools
will not bring down any services, even temporarily. The cluster
will recover, and within a reasonable time period, all services
will return to their full replica count.

Demo II: Worker node crash
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Description: Crash of a worker node effect on services (Kafkas
and Mirror Maker).

Observability: Ensure the availability of all services across the
cluster; monitor for any unexpected events within the cluster.

Steady State: All services are fully available and ready to
accept traffic.

Hypothesis: Eliminating one of the Kubernetes worker pools
will not bring down any services, even temporarily. The cluster
will recover, and within a reasonable time period, all services
will return to their full replica count.

Checks:

● Verify that all Kafka clusters and accompanying services
are ready.

● Ensure all messages produced are successfully
consumed from the relevant clusters.

Demo II: Worker node crash
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Description: Crash of a worker node effect on services (Kafkas
and Mirror Maker).

Observability: Ensure the availability of all services across the
cluster; monitor for any unexpected events within the cluster.

Steady State: All services are fully available and ready to
accept traffic.

Hypothesis: Eliminating one of the Kubernetes worker pools
will not bring down any services, even temporarily. The cluster
will recover, and within a reasonable time period, all services
will return to their full replica count.

Checks:

● Verify that all Kafka clusters and accompanying services
are ready.

● Ensure all messages produced are successfully
consumed from the relevant clusters.

Demo II: Worker node crash
 Chaos Engineering Target System Design Chaos Demo Wrapping up

https://docs.google.com/file/d/1J8ZwpM7-1iAr1g86RuBvFjFbYnt7Pdfi/preview

78

78

Embracing Chaos - Benefits
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Confidence in
System & Wrinkles

prevention

Experience & new
knowledgeMisconfigurations

79

79

Embracing Chaos - Benefits
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Confidence in
System & Wrinkles

prevention

Experience & new
knowledgeMisconfigurations

80

Embracing Chaos - How to ?
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Game Days

81

Embracing Chaos - How to ?
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Game Days

82

Embracing Chaos - How to ?
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Game Days

Know your tools

83

Embracing Chaos - How to ?
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Game Days

Know your tools

84

Embracing Chaos - How to ?
 Chaos Engineering Target System Design Chaos Demo Wrapping up

Game Days

Know your toolsStart small

85

Game Days

Know your toolsStart small

Thank you!
 Chaos Engineering Target System Design Chaos Demo Wrapping up

