FAIRPHONE

From phone hardware to mobile Linux

FOSDEM 2024, Luca Weiss
About me

Luca Weiss

Android Platform Engineer @ Fairphone

Open-Source maintainer and contributor

- postmarketOS
- Linux kernel
- OpenRazer

fosstodon.org/@z3ntu
What is this presentation about?

- Understand software concepts by understanding hardware
- Going from PCB level using schematics to Linux and devicetree
- How Linux communicates with the different hardware to make it work
- You might not have schematics for your device but concepts are the same
On the Printed Circuit Board (PCB)

SoC and RAM/internal storage are stacked on top of each other (keyword: uMCP - UFS-based multi-chip package)
Inside the System on a chip (SoC)

Many co-processors with their own code!
How do we address anything? MMIO!

```c
interrupt-parent = <&intc>;

#address-cells = <2>;
#size-cells = <2>;

soc: soc@0 {
    #address-cells = <2>;
    #size-cells = <2>;
    ranges = <0 0 0 0x10 0>;
    dma-ranges = <0 0 0 0x10 0>;
    compatible = "simple-bus";
}

gcc: clock-controller@100000 {
    compatible = "qcom,gcc-sc7280";
    reg = <0 0x00100000 0x10000>;
    // [...]
}

ipcc: mailbox@408000 {
    compatible = "qcom,sc7280-ipcc", "qcom,ipcc";
    reg = <0 0x00000000 0x10000>;
    // [...]
}

gpi_dma0: dma-controller@900000 {
    compatible = "qcom,sc7280-gpi-dma", "qcom,sm6350-gpi-dma";
    reg = <0 0x00000000 0x60000>;
    // [...]
}

qupv3_id_0: geniup@9c0000 {
    compatible = "qcom,geni-se-upq";
    reg = <0 0x00000000 0x20000>;
    // [...]
}
```

```bash
fairphone-fp5:~$ cat /proc/iomem # edited for simplicity!
00100000-002effff : 1000000.clock-controller clock-controller@100000
00408000-0040ffff : 4000000.mailbox mailbox@400000
...
00900000-0095ffff : 900000.dma-controller dma-controller@900000
00980000-00987fff : 980000.12c i2c@984000
00988000-009b0fff : 988000.12c i2c@988000
00990000-00993fff : 990000.12c i2c@990000
00994000-00997fff : 994000.serial serial@994000
009c0000-009c1fff : 9c0000.serial serial@9c0000
009c0000-009c1fff : 9c0000.geniup geniup@9c0000
...
18592000-18592fff : 18591000.cpufreq cpufreq@18591000
18593000-18593fff : 18591000.cpufreq cpufreq@18591000
80000000-27ffffff : System RAM # 8 GiB
```
Too few pins - too many functions

- Many GPIOs have multiple functionalities behind the same pin
- Enable flexibility in using SoC for different use cases
 - e.g. need more I²C busses or more SPI busses
 - Hardware designer chooses which function use
- Most pins have alternate functionality behind one or more functions
- Bit-banging (controlling GPIO high/low in software) is CPU intensive and prone to bad timing
 - Dedicated hardware solves this

```c
#include

hll_sensor_default: hll-sensor-default-state {
  pins = "gpio155";
  function = "gpio";
  drive-strength = <2>;
  blasts-pull-up;
};

qup_i2c6_data_clk: qup-i2c6-data-clk-state {
  pins = "gpio24", "gpio25";
  function = "qup06";
};
```
Speaker with external amplifiers: Control path - I^2C connection
Speaker with external amplifiers:
Data path - I²S connection

Protocol:
I²S (Inter-IC Sound)

SoC
- GPIO_150
- GPIO_151
- GPIO_152
- GPIO_153

AW88261
- Analog

CPU via I²S to AW88261: Speaker (stereo: top & bottom)
Microphone: Data & control path: Soundwire

CPU via SoundWire to WCD9385: Microphones (AMIC1, AMIC3, AMIC4), USB-C audio (HPH + AMIC2)
Microphone: Configuration in devicetree

```c
&swr0 {
    status = "okay";

    wcd_rx: codec@0.4 {
        compatible = "sdw20217010d00";
        reg = <0 4>;
        qcom,rx-port-mapping = <1 2 3 4 5>;
    }
};

&swr1 {
    status = "okay";

    wcd_tx: codec@0.3 {
        compatible = "sdw20217010d00";
        reg = <0 3>;
        qcom,tx-port-mapping = <1 2 3 4>;
    }
};
```

```c
wcd9385: audio-codec-1 {
    compatible = "qcom,wcd9385-codec";

    pinctrl-0 = &wcd_default;
    pinctrl-names = "default";

    reset-gpios = <&tlmm 83 GPIO_ACTIVE_LOW>;

    qcom,rx-device = &wcd_rx;
    qcom,tx-device = &wcd_tx;

    // [...]
};
```

```c
wcd-capture-dai-link {
    link-name = "WCD Capture";

    cpu {
        sound-dai = &q6afedai TX_CODEC_DMA_TX_3>;
    }

    platform {
        sound-dai = &q6frouting>;
    }

    codec {
        sound-dai = &wcd9385 1>, &swr0 0>, &lpass_tx_macro 0>;
    }
};
```
USB Type-C

USB-C: the connector for everything

On Fairphone 5:

- USB2.0 (“High Speed”)
- USB3.0 (“SuperSpeed”)
- Analog audio (Audio adapter accessory mode)
- Display out (DisplayPort Alternate Mode)

To achieve this (incl. orientation switching) more components are needed:

- USB Type-C Analog Audio Switch (e.g. OCP96011)
- USB Type-C Redriver (e.g. PTN36502)
USB-C Audio adapter accessory mode

Analog signals use USB 2.0 & SBU pairs:

- D+ ⇒ Right channel
- D- ⇒ Left channel
- SBU1 ⇒ Ground/Microphone
- SBU2 ⇒ Microphone/Ground

(CTIA/OMTP pinout of TRRS 3.5mm)

Linux needs to configure routing for signals to flow
USB-C DisplayPort Alternate Mode

Some devices support DisplayPort over USB-C

- 1/2/4 “USB3.0 pairs” can be used for DisplayPort lanes
 => DP+USB3.0 or DP+USB2.0
- DisplayPort AUX channels over sideband (SBU) pins

Linux needs to configure routing for signals to flow
DP AUX channel needs manual switching
Devicetree reminders

- Devicetree represents **hardware**
 - Write bindings & commit messages accordingly
- All power supplies and GPIOs should be represented in bindings
- Devicetree is operating system independent
 - U-Boot / FreeBSD / etc. should be able to use them
Thanks!

Questions?

@z3ntu@fosstodon.org
https://lucaweiss.eu