
The Art of
Concurrent Scripting

with Raku

by Brian Duggan

 bduggan

FOSDEM 2024

outline

Motivation
Concurrency in Raku
From Bash to Raku
Thinking Concurrently

2/30

Motivation

3/30

Motivation

Shell Scripts

should ...

be easy to write quickly

have few or no dependencies

be easy to understand

not require tons of maintenance

be reliable in case they last for a long time

4/30

Motivation

Shell Scripts

Seen often
Run commands, check exit statuses

Simple control flow; loops, if-then

stdin, stdout, stderr, redirects

Atomic write-and-rename

Seen sometimes
Lock files, pid files for concurrency control

Parallel execution (wait)

Receiving signals (trap), sending signals (kill)

Timing out commands (timeout)

Progress indicators

Seen rarely or never
Message queues

Event loops

Async/await

Threads for concurrency

Shared memory

Mutexes

5/30

motivation

Common Scripting Assumptions

scripts are just doing some thing

no need for fancy programming techniques

Concurrency techniques are for programming not scripting

With scripting, "real" languages are not appropriate. bash is

enough!

The world is not that complicated

Reality

Scripts can do more

Easy things are hard in bash

There is a great language for scripting with concurrency

Scripting languages are a limiting factor

The world is that complicated

6/30

motivation

Common Scripting Assumptions

Mondriaanmode door Yves Saint Laurent (1966)

Reality

Pieter Brueghel the Younger - The Kermesse of St George

Better languages for scripting can help deal with reality.

7/30

Concurrency in Raku

8/30

Concurrency in Raku

Concurrency, Asynchrony, and Parallelism

Definitions
Parallelism "choosing to do multiple things at once"

Asynchrony "reacting to things that will happen"

Concurrency "competition to access and mutate some shared

resource"

See this talk by Jonathan Worthington

Raku
was designed to support all three

does not impose a one paradigm;

like events, threading, message-passing, or actors

provides tools, not rules

Raku provides tools to
avoid race conditions

avoid data contention

choose your own paradigm, or mix and match

use concurrency wisely

Getting started

Let's make a race condition!

start say "hello";

say "world";

hello

world

world

hello

world

Use start to schedule code for execution (in a separate
thread).

The return type is a Promise.

Let's avoid this race condition!

await start say "hello";

say "world";

hello

world

9/30

Concurrency in Raku

from docs.raku.org/language/concurrency :

High level APIs
Promises : represent execution that may not yet have completed.
Channels : are one-to-one message queues.
Supplies : are one-to-many message queues.
Proc::Async : represents an external processes.

Low level APIs
Threads : An OS thread of execution
Locks : Allow synchronization across threads
atomic types : atomic ints, native 32 or 64-bit ints
atomic operations : fetch + increment/decrement/add/assign, compare-atomic-swap (CAS)
Scheduler : Manages concurrent execution ($*SCHEDULER by default is a ThreadPoolScheduler)

Some built-in event sources:
IO::Notification - file system changes
IO::Socket::Async -- tcp or udp sockets
Supply.interval - time changing
IO::Pipe -- UNIX pipes (stdout, stderr)

Other async/concurrent-ish things
race and hyper can schedule parallel execution
Phasers run things out of order (more on that later)

10/30

From Bash to Raku

11/30

From Bash to Raku

Turn any bash script into Raku by using "shell"

#!/bin/bash

echo "starting database dump!"

date

pg_dump bigdb -f bigdb.dump

date

echo "done!"

starting database dump!

█

#!/usr/bin/env raku

shell <<echo "starting database dump!">>;

shell "date";

shell 'pg_dump bigdb -f bigdb.dump';

shell q:to/BASH/;

date

echo "done!"

BASH

starting database dump!

█

Raku supports single quotes, double quotes, word quoting (with nested quotes), heredocs and more.

12/30

From Bash to Raku

Easy things are easy

#!/bin/bash

echo "starting database dump!"

date

pg_dump bigdb -f bigdb.dump

date

echo "done!"

starting database dump!

█

#!/usr/bin/env raku

say "starting database dump!";

shell 'pg_dump bigdb -f bigdb.dump';

say now - INIT now;

say "done!"

starting database dump!

10.004250187

done

Code following INIT runs during the initialization phase; "now - INIT now" is the number of seconds that have passed since the

program started.

INIT is a phaser. Other phasers: BEGIN, CHECK, END, ENTER, LEAVE

LEAVE is equivalent to "deferred execution" in Go.

13/30

From Bash to Raku

Can we watch the seconds in real time?

say "starting database dump!";

my $clock = Supply.interval(1);

my $timer = $clock.tap: { .say }

shell 'pg_dump bigdb -f bigdb.dump';

$timer.close;

say "done!";

starting database dump!

1

2

3

4

5

6

7

done!

Use Supply.interval(1) to create an on-demand supply that emits a new value every 1 second. Add a Tap to the supply, with tap.

Then use close to close the tap.

14/30

From Bash to Raku

Can we watch the seconds in real time?

say "starting database dump!";

my $clock = Supply.interval(1).map: { .polymod(60).reverse.fmt('%02d',':'); }

my $timer = $clock.tap: { print "\r" ~ $^time }

shell 'pg_dump bigdb -f bigdb.dump';

$timer.close;

say "done!";

starting database dump!

00:07█

You can use map on supplies (or lists, arrays, sequences or other iterables).

The polymod method returns a sequence of successive div/mod operations (mod 60, then div 60, etc). fmt uses printf strings to

format numbers. print prints without a newline.

15/30

From Bash to Raku

Can we do this for all shell commands?

my $clock = Supply.interval(1).map: { .polymod(60).reverse.fmt('%02d',':'); }

&shell.wrap: -> $cmd {

 my $timer = $clock.tap: { print "\r$cmd ... [$^time]" }

 callsame;

 $timer.close;

 say "$cmd ... done!";

}

shell 'pg_dump bigdb -f bigdb.dump';

pg_dump bigdb -f bigdb.dump ... 00:07█

Use wrap to wrap a function in another one ("decorators" in python), and callsame to dispatch to the original.

16/30

From Bash to Raku

timeouts

Run a command that might need to be stopped.

#!/bin/bash

timeout 1 host example.com || \

echo "DNS seems okay!"

#!/usr/bin/env raku

await Promise.anyof(

 start { shell <<host example.com>> },

 start sleep 1

)

Note the shell command will continue after the Raku program

exits.

We want to send a TERM signal to it.

Use start to make a Promise.

Use Promise.anyof to make a promise that resolves when any one of several promises resolve.

Use await to wait for a promise to resolve. Note! there is no async, only await!

17/30

From Bash to Raku

timeouts

Run a command that might need to be stopped: better way!

my $timeout = Promise.in(1);

my $proc = Proc::Async.new(<<host example.com>>);

await Promise.anyof($proc.start,$timeout);

$proc.kill(SIGTERM) if $timeout;

Use Promise.in(1) to make a promise that resolves one second later.

Create a Proc::Async object, and call start to spawn the process, and kill to send a signal.

18/30

Thinking Concurrently

19/30

Thinking Concurrently

react-whenever vs taps

These are equivalent :

$supply.tap: -> $event {

 say $event

}

start react whenever $supply -> $event {

 say $event

}

Use react to make an event loop, and then add taps with whenever. And start schedules it in another thread.

20/30

Thinking Concurrently

example: generate HTML from markdown

Watch a directory run md2html when a file ending in ".md" is changed.

my $supply = $*CWD.watch.grep({ .path.ends-with('md')

$supply.tap: {

 shell "md2html {.path} > {.path}.html"

}

sleep;

Without sleep the main thread exits.

my $supply = $*CWD.watch.grep({ .path.ends-with('md')

react whenever $supply {

 shell "md2html {.path} > {.path}.html"

}

Use $*CWD to get the current working directory.

Call watch on an IO::Path object to generate a Supply that emits IO::Notification events.

Using react plus whenever is equivalent to adding a Tap to a Supply.

Without start it will block.

21/30

Thinking Concurrently

Example 2: calculate the median ping time

 $ ping google.com

 PING google.com (142.250.65.238): 56 data bytes

 64 bytes from 142.250.65.238: icmp_seq=0 ttl=118 time=9.407 ms

 64 bytes from 142.250.65.238: icmp_seq=1 ttl=118 time=6.956 ms

 64 bytes from 142.250.65.238: icmp_seq=2 ttl=118 time=8.537 ms

 64 bytes from 142.250.65.238: icmp_seq=3 ttl=118 time=8.535 ms

 64 bytes from 142.250.65.238: icmp_seq=4 ttl=118 time=10.714 ms

 ^C

 --- google.com ping statistics ---

 5 packets transmitted, 5 packets received, 0.0% packet loss

 round-trip min/avg/max/stddev = 6.956/8.830/10.714/1.230 ms

Let's write a script to...

start a ping process

stop if it is interrupted or after 10 seconds

keep track of the times in the output, and

print the median time (missing from the stats above)

Then,

make a little graph with the times

22/30

Thinking Concurrently

React to multiple events

my $proc = Proc::Async.new(<<ping google.com>>, :stdout);

LEAVE $proc.kill;

my $timeout = Promise.in(10);

my @times;

react {

 whenever $timeout { done; }

 whenever $proc.stdout { /time '=' (.*) ms / and do { @times.push($0); say "$0" } }

 whenever signal(SIGINT) { done; }

 whenever $proc.start { say "ping finished" }

}

say "median ping time: " ~ @times.sort[@times.elems div 2] ~ " ms";

$./pinggoogle.raku

15.902

15.512

15.340

^Cmedian ping time: 15.512 ms

Use signal to make a Supply and react to signals.

Note that the @times array is being mutated by another thread!

23/30

Thinking Concurrently

Locks

What if we had multiple hosts?

my @procs = @hosts.map: { Proc::Async.new: <<ping $^host>> }

Then this would be unsafe

 /time '=' <time> / and @times.push($0)

We could use a lock to protect the access to this shared data structure.

my $lock = Lock.new;

and then

 /time '=' <time> / and $lock.protect: { @times.push($0) }

A Lock is a low-level construct that blocks other threads. See also Lock::Async for a lighter-weight lock. But, in this case,

another option is to use a Channel.

24/30

Thinking Concurrently

React to multiple events

Let's write multiping!

$./multiping.raku -h

Usage:

 ./multiping.raku [<hosts> ...]

$./multiping.raku google.com google.co.uk google.be

 google.com: 6.877 ******

 google.co.uk: 7.340 *******

 google.be: 7.243 *******

 google.com: 7.143 *******

 google.co.uk: 7.357 *******

 google.be: 7.146 *******

 google.com: 8.399 ********

 google.be: 6.995 ******

 google.co.uk: 7.186 *******

 google.com: 8.222 ********

 google.be: 9.567 *********

 google.co.uk: 10.485 **********

 google.com: 6.373 ******

 google.co.uk: 7.533 *******

 google.be: 7.293 *******

 google.com: 6.446 ******

 google.co.uk: 7.320 *******

 google.be: 7.011 *******

 google.com: 16.386 ****************

 google.be: 14.021 **************

 google.co.uk: 14.052 **************

 google.com: 6.332 ******

 google.be: 7.813 *******

 google.co.uk: 7.834 *******

25/30

Thinking Concurrently

React to multiple events

multiping.raku

#!/usr/bin/env raku

unit sub MAIN(*@hosts);

my $channel = Channel.new;

start loop {

 given $channel.receive -> % (:$host, :$time) {

 say "$host: $time ".fmt('%25s') ~ ("*" x ($time.Int));

 }

}

my @procs = @hosts.map: { Proc::Async.new: <<ping $^host>> }

my regex time { <[0..9.]>+ }

react {

 for @procs Z, @hosts -> ($proc,$host) {

 whenever $proc {

 /time '=' <time> / and $channel.send: %(:$host, :$<time>);

 }

 whenever $proc.start { }

 }

}

Make a channel.

Receive, destructure

and process data.

Spawn external

processes.

Construct data and

send.

26/30

Thinking Concurrently

React to multiple events

$./multiping.raku -h

Usage:

 ./multiping.raku [<hosts> ...]

$./multiping.raku google.com google.co.uk google.be

 google.com: 6.877 ******

 google.co.uk: 7.340 *******

 google.be: 7.243 *******

 google.com: 7.143 *******

 google.co.uk: 7.357 *******

 google.be: 7.146 *******

 google.com: 8.399 ********

 google.be: 6.995 ******

 google.co.uk: 7.186 *******

 google.com: 8.222 ********

 google.be: 9.567 *********

 google.co.uk: 10.485 **********

 google.com: 6.373 ******

 google.co.uk: 7.533 *******

 google.be: 7.293 *******

 google.com: 6.446 ******

 google.co.uk: 7.320 *******

 google.be: 7.011 *******

 google.com: 16.386 ****************

 google.be: 14.021 **************

 google.co.uk: 14.052 **************

 google.com: 6.332 ******

 google.be: 7.813 *******

 google.co.uk: 7.834 *******

27/30

Thinking Concurrently

How about pg_multidump?

Let's write a script to dump multiple databases at the same time.

race for (1..10).race(batch => 1, degree => 10) { sleep 1 }

say now - INIT now;

1.125074767

#!/usr/bin/env raku

unit sub MAIN(*@databases);

&shell.wrap: { say "starting $^cmd"; callsame; say "done with $cmd" }

race for @databases.race(batch => 1, degree => 10) {

 shell "pg_dump $^db > $db.sql";

}

./pg_multidump.raku one two three

starting pg_dump one > one.sql

starting pg_dump two > two.sql

starting pg_dump three > three.sql

done with pg_dump one > one.sql

done with pg_dump three > three.sql

done with pg_dump two > two.sql

Call the method race on a sequence to turn it into a HyperSeq. Then use the statement prefix to parallelize execution.

28/30

Conclusions

Using concurrency in Raku is fun and easy, and is a practical way to write versatile scripts.

We have seen examples of

tracking progress of a command in another thread

timing out a command using a Promise

using asynchronous techniques to respond to filesystem events

using asynchronous techniques to respond to lines emitted from a command

instant parallelism -- spawning multiple processes at once and running them in batches

using locks (mutexes) to manage concurrency

For further reading, check out

ecosystem modules OO::Actors and OO::Monitors for nice ways to encapsulate concurrency in classes

other modules in the Concurrent:: namespace on https://raku.land

The raku docs -- https://docs.raku.org/language/concurrency -- which has many more examples.

29/30

Thank You!

30/30

