
elfconv: AOT compiler that translates Linux/AArch64 ELF binary
to LLVM bitcode targeting WebAssembly

Masashi Yoshimura, NTT
2024/02/04

repo: https://github.com/yomaytk/elfconv

1

https://github.com/yomaytk/elfconv

• WebAssembly (WASM) is virtual machine instruction set

• ✅ portable

– enables to run apps on both browsers and servers without modification

• ✅ secure

– highly isolated from the host kernel on the server by WASI.

• WASI is an API that provides access to several OS-like features (filesystems,

sockets, …).

• WASI is implemented by WASI runtimes (wasmtime, WasmEdge, …).

– memory isolation with harvard architecture

• architecture that physically separates memory for instructions and data.

What is WebAssembly? Why using that?

2 

• ❌ limitation in the capability of apps

– can jump to only the instructions that are determinable at compile time

• cannot indirectly jump to the instructions generated in the data memory at runtime

– WASI implementation doesn’t cover all POSIX APIs (e.g. fork, exec)

What is WebAssembly? Why using that?

3 

Many programming languages support WASM (e.g. C, C++, Rust, Go, …).

However, it isn’t easy to build WASM in some cases as follows.

Case 1. The programming language that you want to use doesn’t completely
support WASM

Case 2. binaries are available, but the source codes of the binaries are not
available

– e.g.) The source code is not available under lisence

Case 3. Time-consuming to building the environment
– e.g.) you might be not able to build the dependent libraries because they are not

maintained and so on.

challenging in building WASM

4 

• TinyEMU: https://bellard.org/tinyemu/
– Author: Fabrice Bellard
– x86 and RISC-V emulator available on the browser
– Linux kernel can run on the browser

• container2wasm: https://github.com/ktock/container2wasm
– Author: Kohei Tokunaga, NTT
– enables to run Linux kernel and container runtimes with emulators compiled

to WASM (e.g. TinyEMU)
– can run containers without modification on the browser and WASI runtimes

But, emulators possibly incur large performance overheads…

Existing projects that run Linux binaries on WASM

AOT compile Linux binaries to WASM!

5 

https://bellard.org/tinyemu/
https://github.com/ktock/container2wasm

• compiles Linux ELF binary to LLVM bitcode
• existing compilers (e.g. emscripten) compile LLVM bitcode and the object of

Linux syscalls emulation to WASM
• elfconv is successor to myAOT: https://github.com/AkihiroSuda/myaot

– Author: Akihiro Suda, NTT
– An experimental AOT-ish compiler (Linux/riscv32 ELF → Linux/x86_64 ELF, Mach-O, WASM, ...)

elfconv: AOT compiler from Linux/ELF to WASM

6 

https://github.com/AkihiroSuda/myaot

Demo

7 

• elfconv-Lifter
– parse ELF binary, map every ELF section, etc…

• remill (elfconv-Backend) : https://github.com/lifting-bits/remill
– library for lifting machine code to LLVM bitcode

How it works? (ELF -> LLVM bitcode)

8 

https://github.com/lifting-bits/remill

• convert a function to a LLVM IR function (e.g. _func1 -> @_func1_lift)
– But, need to extract every function from ELF

How it works? (remill)

9 

• convert a CPU instruction to a LLVM IR block (e.g. mov x2, x0 -> 1_mov)

How it works? (remill)

10 

• convert a CPU instruction to a LLVM IR block
– PC calculation, Operand calculation
– call the function of the instruction-specific operation

How it works? (remill)

11 

• The code of WASM can indirectly jump to only the code that is determinable at
compile time.

• currently, not support setjmp and longjmp.

How it works? (indirect jump)

12 

• statically link LLVM bitcode and elfconv-Runtime
• elfconv-Runtime

– mapped memory (stack, heap), Linux system calls emulation

How it works? (LLVM bitcode -> WASM)

13 

• libc implementation: emscripten, wasi-libc, etc…

Case 1. use libc function if it exists (e.g. write)

How it works? (Linux syscalls emulation)

14 

• libc implementation: emscripten, wasi-libc, etc…

Case 2. pseudo-implement the syscall if it doesn’t exist (e.g. brk)

How it works? (Linux syscalls emulation)

not use brk (unsigned long brk)

15 

• target sample ELF binary: prime number calculator

– compute all prime numbers less than the input integer

• Test: ELF/aarch64 -> LLVM bitcode -> ELF/x86_64 (not WASM)

– current system calls emulation for WASI runtimes is insufficient, so we

use x86_64 as the output binary for benchmark tests.

• comparison : QEMU emulation aarch64 to x86_64

16 

Performance

QEMU emulation vs. binary AOT compilation

Case 1. input integer : 10,000,000

• QEMU : 9.437s

• elfconv : 8.353s

Case 2. input integer : 50,000,000

• QEMU : 1m30.014s

• elfconv : 1m18.972s

17 

Performance

Case 1. input integer : 10,000,000

• QEMU : 9.437s

• elfconv : 8.353s

Case 2. input integer : 50,000,000

• QEMU : 1m30.014s

• elfconv : 1m18.972s

18 

Performance

1.13 times faster

1.14 times faster

• output other binary formats
– support WASM, ELF/x86-64 now

Future works

19 

• compile ELF of other CPU architectures
– support aarch64 now

Future works

20 

• append system calls emulation

– implement a part of system calls now

– Some system calls (e.g. fork, exec) are difficult to implement when targeting

WASM

• support dynamic linking

– support only static linking now

• performance analysis of WASM target

• make LLVM bitcode more efficient

Future works

21 

repo: https://github.com/yomaytk/elfconv

https://github.com/yomaytk/elfconv

Questions?, and I would like to get your opinions!

22 

