
Yet another event sourcing 
library

Robert Pofuk



/about-me

- Raiffeisen Bank International AG
- Software Developer/DevOps/Architect at 
- Clojure developer

- EventSourcing, CQRS, REST, and CI/CD pipeline, integrating testing, business analysis
- Co-Founder of AlloraIT

- https://github.com/alpha-prosoft/edd-core
- https://github.com/alpha-prosoft/edd-core-web

- https://github.com/rpofuk
- https://github.com/raiffeisenbankinternational



Agenda

● History
● Serverless and AWS lambda
● CQRS
● Event Sourcing
● Architecture
● Why open source?
● Conclusion



History

● Started project in 2019
○ Wanted to use Serverless 
○ Wanted to utilize managed infrastructure as much as possible

● We also wanted to keep business logic vendor independent
○ We want to be able to move (It is also regulatory requirements to be movable)

● Simple API
○ No discussion about path, query parameters, headers….

● Data must be open
○ No hidden binary stored messages in queues, or custom formats



Serverless and AWS lambda

- Startup problem
- Each lambda instance is new VM
- JAVA takes time to start (Clojure much more)

- Most of libs did not compile to GraalVM
- Created AWS SDK

- Whatever AWS does in SDK in the end is just POST request
- Very high inconsistency in signing

- Forked hikaricp
- Lots of exceptions for LogBack



CQRS

● Must see video
○ https://www.youtube.com/watch?v=qDNPQo9UmJA

● CQRS stands for Command and Query Responsibility Segregation
● Our implementation:

○ Commands
■ POST /commands
■ Commands-queue
■ Commands s3 bucket 

○ Query
■ GET /query

○ Frontend client implementation is simple ~300 lines of code
■ Frontend mocking
■ Simple infrastructure

https://www.youtube.com/watch?v=qDNPQo9UmJA


Event Sourcing

● Event Sourcing is a pattern for storing data as events in an append-only log
○ Store events that happened
○ Requires lots of resources for storage and processing

● Lots of critical systems requires proving current state
○ Plenty of audit log implementations
○ In event sourcing this comes naturally

● Our implementation: 
○ PostgreSQL

■ Just simple table with metadata and one JSONB field
○ We collect all events per aggregate to be sequential (Optimistic Locking)

■ Unique constraint on event_sequence and aggregate_id
○ One command updates one aggregate





A
rchitecture



Why Open Source?

● As internal-only library:
○ Internal implementation was not meant as library

■ Very specific requirements
○ No open sourcing process existed before in company
○ Not alternative implementations

■ Only Postgres (event-store) and OpenSearch (view-store)
● As open source project:

○ Hobby projects
■ Using it for side projects 
■ Implemented DynamoDB support
■ Alternative implementations help form propper abstractions and improvements

○ Contribute back all improvements to internal implementation
■ Lots of tests and quality improvements (i.e. integration tests and compatibility tests)



Conclusion

● Was very positive experience to deliver this solution to production
○ On daily basis it pays off that we store everything (request_log, command_store)

● Super easy to recover data
○ Unprocessed messages (DLQ) because of business error, or data quality is super easy

● Business is happy
○ System is eventually consistent but we can also eventually check if it actually is


