
Christian Kniep, 2024-02-03

HPC Container Conformance
2024 edition (w/ OCI Working Group intro)

Problems Challenges
module load

People are used to ‘module load’ to pick the right software stack at runtime

• module load gromacs:2021.5

With containers a strategy often used is to use a naming scheme

A. cqnib/gromacs:2021.5_graviton2

B. cqnib/gromacs:2021.5_skylake

C. cqnib/gromacs:2021.5_zen3

D. cqnib/gromacs:2021.5_cluster_1

$ module load gromacs:2021.5
$ which gmx
/software/graviton2/gcc-7.3.1/gromacs-2021.5-FF/bin/gmx

$ module load gromacs:2021.5
$ which gmx
/software/zen3/gcc-7.3.1/gromacs-2021.5-AABB/bin/gmx

$ docker run -ti cqnib/gromacs:2021.5_graviton2
$ which gmx
/opt/view/bin/gmx

Problems Challenges
Image Index

• The platform identifier does not
allow for fine grained control

• Runtimes will pick the first
matching entry, not the best
matching (there is no rank)

gromacs:2021.5
Image Index

linux/arm64 gromacs@sha256:AABBCC

linux/amd64 gromacs@sha256:BBCCDD

wasm gromacs@sha256:CCDDEE

Problems Challenges
Image Index WE DESIRE

• An identifier to specify systems

• Runtimes able to use the
identifier to pick the BEST
MATCHING system

gromacs:2021.5
Image Index

zen4+MI250x gromacs@sha256:AABBCC

x86_64_v4 gromacs@sha256:BBCCDD

x86_64_v4+A100 gromacs@sha256:CCDDEE

Early Attempts
Platform (mis-)use

The manifest list uses the
(unused) platform.features
field to define for what the
image is optimised for.

https://qnib.org/blog/2019/02/14/match-node-specific-needs-using-manifest-lists

https://qnib.org/blog/2019/02/14/match-node-specific-needs-using-manifest-lists

Early Attempts
Docker Tweak

Each engine is aware of what
images are best.

https://qnib.org/blog/2019/02/14/match-node-specific-needs-using-manifest-lists

https://qnib.org/blog/2019/02/14/match-node-specific-needs-using-manifest-lists

HPC Container Conformance
(HPC3)

Expected Image Behaviour

Login vs App Container

Expected Image Behaviour
Login Container vs. Application Container

 
The above container uses the ENTRYPOINT to start the application in question.
All arguments (CMDs) are arguments for the application itself.

 

Great for application aliases; but for HPC it hinders how the image can be used.
Do I need to specify the application (say gmx for GROMACS) or do I start with
the arguments?

$ alias goreleaser=“docker run -ti goreleaser/goreleaser”
$ goreleaser
GoReleaser is a release automation tool for Go projects.
Its goal is to simplify the build, release and publish steps while providing variant
customization options for all steps.

ENTRYPOINT

/bin/application

CMD

—help

Expected Image Behavior
Login Container vs. Application Container

For HPC containers we expect to be dropped into a shell (most likely bash)

The look and feel should be similar to logging into a compute node. The
environment is prepared to have the application already at your fingertips.

docker run -ti -v $(pwd):/data quay.io/cqnib/gromacs-2021.5_gcc-7.3.1:aarch64
bash-4.2#

$ docker run -ti -v $(pwd):/data -w /data \
 quay.io/cqnib/gromacs-2021.5_gcc-7.3.1:aarch64 gmx mdrun -s benchRIB.tpr -resethway
 :-) GROMACS - gmx mdrun, 2021.5-spack (-:
Using 1 MPI thread
Using 8 OpenMP threads

ENTRYPOINT

/bin/bash —rcfile /etc/profile -l -c $* --

CMD

/bin/bash

http://quay.io/cqnib/gromacs-2021.5_gcc-7.3.1:aarch64

USER within Container

Expected Image Behaviour
USER within Container

The container is going to spawn a process under the UID:GID of an beforehand
unknown user. This implies the following:

• Make sure that scripts within the container do not use `whoami` or anything
that needs a ‘real’ username

• Make sure the container is able to run as `nobody`

Annotations

What are annotations and labels?
Labels should be considered ground truth for all key/value pairs

oci.image.config.v1

oci.image.layer.v1.tar

oci.image.layer.v1.tar

foo=barbar=foo

oci.image.manifest.v1

anno=tation

docker.distribution.manifest.v2

docker.container.image.v1

docker.image.rootfs.diff.tar

docker.image.rootfs.diff.tar

foo=barbar=fooanno=tation anno=tationI talked about that last year….

OCI WG: Image Compatibility

OCI Working Groups
WHAT?

The Open Container Initiative (OCI) maintains the key container specifications.

1. Image Format Specification: Developing standards for container image formats. This
includes the layout, contents, and construction of container images.

2. Runtime Specification: Focusing on standardising the runtime environment for
containers. This involves how a container should be run and what features it must
support.

3. Distribution Specification: Concentrating on the mechanisms for distributing container
images.

4. Security: Working on security aspects of container technology, which can include
addressing vulnerabilities, ensuring image provenance, and securing container contents
and communication

OCI Working Groups
Image Compatibility

The WG “Image Compatibility” was formed in 2023 and our goal is to create a
standard to

• Select an image from a manifest list based on expected performance /
compatibility. E.g. pick an image with optimised binaries/libraries.

• Define a OCI wide way of expressing

• what an image was build for

• What it expects from the host (needs a kernel module)

• …

OCI Working Groups
A better way!

Compared to an HPC-only approach we are able to balance this with other
groups needs:

• Runtime questions: WASM is a thing - and we have questions in common
when it comes to picking a runtime over another.

• Scheduling/Registry: HPC is great but Container tech is wide spread and
humming. The OCI WG makes sure we are aligned with important schedulers
(read Kubernetes) and the registry community.

• Process: OCI WG are oiled machines in standardisation

Where are we now?

OCI State of Affairs
What did we do so far

1. Discussions around use-cases

2. Brainstorming of implementations (as we discuss use-cases)

Use-case #1
The Image Author

1. wants to create an image compatibility definition

2. most likely wants not to do it manually (@vosch wrote a tool [1]), w/
functionality ideally included in build pipeline (EasyBuild, Spack)

3. …

[1] github.com/supercontainers/compspec-go

https://github.com/supercontainers/compspec-go

Use-case #2
The System Admin

1. wants to check whether an image is going to run w/o downloading it first

2. wants to collect information which images of which kind are run

3. wants to validate that all (the important) applications are going to work on a
new system before switching

4. wants to be able to dig deeper into the comp-spec to understand how to
setup a system to leverage an image to the fullest.

Use-case #3
The End User

1. just wants it to just work :) (SysAdmin and image author should figure it out)

Use-case #4-9

4. Domain Architect: person that provides the expertise for how images should be
described in the compatibility specification

5. Tool Writer: person that builds tools to manage images on registries and other
locations.

6. Deployment Engineer: Person who owns managing the application deployment

7. Registry Maintainer: person maintaining the registry (e.g., Docker Hub, Harbor)

8. OCI Specification Maintainer: someone from the open containers initiative (aka us)

9. Security Administrator: Person responsible for securing the environment.

Links
Resources to follow up on
• https://github.com/supercontainers/compspec-go

 An extractor tool Vanessa Sochat

• github.com/opencontainers/tob/blob/main/proposals/wg-image-compatibility.md

 Working Group proposal to the OCI

• github.com/kubernetes-sigs/node-feature-discovery

 Node feature discovery (NFD) for Kubernetes

ISC’24: Friends of Container Boat Trip

5/13 7PM (-ish, keep an eye on that)

ISC’24: HighPerf Container Workshop

5/16 9AM - 6PM container-in-hpc.org/isc/2024/overview/index.html

https://github.com/supercontainers/compspec-go
https://github.com/opencontainers/tob/blob/main/proposals/wg-image-compatibility.md
https://github.com/kubernetes-sigs/node-feature-discovery
https://container-in-hpc.org/isc/2024/overview/index.html

