
Cryptography vs AI
Deepfake resistant WebRTC video calls,

trustless P2P networks and other shenanigans



Yup, this is a clickbait title 



THE ORIGIN STORY



Project requirements

● A fully featured video+audio chat with minimal 
server requirements

● No centrally stored identity…
● …but a basic auth mechanism, to ensure genuine 

identity



SIGNALLING SERVER



BUT CAN I TRUST 
THE PEERS?



LET’S USE
A KEY!



Why tho?

● Digital signatures are everywhere and foolproof
● Keypairs are widespread, choose your poison:

○ FIDO/WebAuthn 
○ Crypto wallets
○ Good ol’ ssh-keygen -t ecdsa





Beyond sign and verify*, you can even 
generate or derive keys from your browser !

*(that’s what this talk is about btw)



HERE COMES               THE PLAN



Basic overview

● A first client (= host) creates a new room on the signaling server (with a 
unique ID), by opening a websocket connection

● The host can send a special type of message on the socket which lets them 
whitelist a set of public keys

● Whenever a new peer wants to connect to the chat, the server asks the 
newcomer to sign a special payload containing the room ID, alongside a 
timestamp (to avoid replay attacks)

● If the signature matches the payload, and the public key is in the whitelist, let 
them reach the other peers

● Rinse and repeat



SECURITY
DISCLAIMER





tl;dr: This project is for fun, 
don’t screw up with key management



Cryptography is typically bypassed, not penetrated.

Adi Shamir



LET’S DIVE IN! 



Importing a private key (client side)
const loadKey = async (data: BufferSource) => {

   const key = await crypto.subtle.importKey(

       'pkcs8',

       data,

       {

           name: 'ECDSA',

           namedCurve: 'P-256',

       },

       true,

       ['sign']

   )

  

   return key

}

PKCS8 is the standard format 
used by ssh-keygen

We’re using Elliptic Curve 
signature

We specify that we want to use this key 
for signing



Websocket handshake overview

type ServerPayloadType = {

   roomId: string,

   issuedAt: string,

}

type SignedPayloadType = {

   payload: ServerPayloadType,

   signature: ArrayBuffer,

   publicKey: JsonWebKey,

}

This is the payload we’re getting 
from the server.
issuedAt is a ISO-8601 timestamp

This is the signed payload
that we send back to the server



Signing a payload (client side)
const sign = async (
   key: CryptoKey ,
   payload: ServerPayloadType
   ): Promise<SignedPayloadType > => {
   const signable = new TextEncoder ().encode(
       JSON.stringify (payload)
   )
   const signature  = await crypto.subtle.sign(
       {
           name: 'ECDSA',
           hash: { name: 'SHA-256' },
       },
       key,
       signable
   )
  
   return {
       payload,
       signature ,
       publicKey : await crypto.subtle.exportKey ('jwk', key)
   }
}



Verifying the payload (server side)

const verifyPayload = async (payload: SignedPayloadType ): boolean => {

   const key = await crypto.subtle.importKey(

       'jwk', payload.publicKey, 'ECDSA', false, ['verify']

   )

   const signable = new TextEncoder().encode(

       JSON.stringify(payload.payload)

   )

   return crypto.subtle.verify(

       {

           name: 'ECDSA',

           hash: { name: 'SHA-256' },

       },

       key,

       payload.signature,

       signable

   )

}



A quick look at the signaling server (1/3)

socket.on('message', (message) => {

   const data = JSON.parse(message);

   if(data.type === 'request')

       return sendAuthPayload()

   if(data.type === 'auth')

       return connectPeer()

   // ...

});



A quick look at the signaling server (2/3) 

The connectPeer function looks if:

● The public key is valid for the roomId
● The issuedAt timestamp is still in an acceptable range
● The signature matches the payload and the public key

If all is good it broadcasts (= emits to all connected socket client except the one 
that sent the auth request) the peer information to all the other connected peers.



A quick look at the signaling server (3/3)

RTCPeerConnection objects are a pain in the bum to manage, @feross 
simple-peer simplifies the process of generating the objects.

https://github.com/feross/simple-peer


BUT WAIT…
THERE’S MORE



Requesting identity checks from peer to peer

Now that we have established a link between client A and B, clients can create 
custom logic to revoke a peer connection. 

e.g.: A “confirm your identity!” button that asks for a new signature of the peers 
from client A to client B.



Using subtleCrypto.encrypt() / .decrypt() on datachannels

WebRTC can also be used to stream arbitrary data between peers, using 
datachannels. 
The subtleCrypto API also features a set of helpers around asymmetric 
encryption/decryption methods.

e.g.: One peer could decide to send their public encryption key (ex: RSA) to the 
others as to create a seamless end-to-end encrypted stream. 
(short reminder that you should not use the same keypair for encryption and 
signing 😉)



This is your call to go further down the p2p 
rabbit hole… 



THEY ALREADY 
TRUST 
THE PROCESS



Webtorrent

WebTorrent is a streaming torrent client for node.js and the 
browser. In the browser, WebTorrent uses WebRTC (data 
channels) for peer-to-peer transport. 



IPFS

The InterPlanetary File System (IPFS) is a protocol, hypermedia and file sharing 
peer-to-peer network for storing and sharing data in a distributed file system. IPFS 
uses content-addressing to uniquely identify each file in a global namespace 
connecting IPFS hosts.



aleph.im

aleph.im is an open-source peer-to-peer network and decentralized cloud 
computing solution built on top of IPFS.



HELPDESK
SESSION



               @BjrInt            @BonjourInternet




