
Building a Web Frontend for Federated
Communication with Brython

Jérôme Poisson (Goffi)

2024-02-04, FOSDEM’24

Libervia

▶ Universal communication ecosystem
▶ Built on XMPP
▶ Features: chat, blogging, A/V calls, calendar events, forums,

etc.
▶ End-to-end encryption (planned for web frontend)
▶ Multi-frontends
▶ Compatible with ActivityPub

Why Python in the Browser?

▶ No context switching
▶ Quick and easy development
▶ High code reusability
▶ Stable Ecosystem

Libervia Web Screenshot

Figure 1: Libervia Web 0.9

Alternatives

Pyjamas/PyJS

▶ Used until Libervia 0.6
▶ port of GWT to Python
▶ Python-to-JavaScript transpiler
▶ Heavy
▶ Similar to desktop development
▶ Supports Python 2 only
▶ Project is no longer active

Transcrypt

▶ Python-to-JavaScript transpiler
▶ Lightweight
▶ Not fully Python compatible
▶ No port of standard libraries (use instead JS modules)

Pyodide

▶ CPython ported to WebAssembly
▶ Heavy
▶ Fully compatible with CPython
▶ Supports numerous packages
▶ Notably great for scientific packages

PyScript

▶ Introduced after Brython was chosen
▶ Uses WebAssembly, relies on Pyodide or MicroPython
▶ Offers web integration
▶ Choice between full Python compatibility (Pyodide, heavier) or

lighter version (MicroPython, less compatible)
▶ Seems easier to use then Pyodide

Other

▶ Skulpt
▶ similar to Brython
▶ not yet Python 3

▶ PyPy.js
▶ PyPy ported to WebAssembly (emscripten)
▶ unmaintained

Brython

▶ Transpiles Python to JavaScript directly in the browser
▶ Caches the transpiled code
▶ Includes a compatibility layer
▶ Real Python, strong compatibility
▶ Up-to-date with Python releases
▶ Most standard libraries are available
▶ Supports pure Python packages
▶ Enables dynamic JS transpilation
▶ Allows calling JavaScript’s eval
▶ Facilitates direct use of JS code in Python and vice versa
▶ Welcoming, responsive and supportive community

It’s Python, for real!

import antigravity

How the Web Frontend Works

Overview

Figure 2: Libervia Architecture Overview

Goals of the Web Frontend

▶ Progressive enhancement
▶ Mostly functional in static environments
▶ Utilizes JavaScript if available

▶ Ease of development and maintainability
▶ Code reuse

Templating

▶ Jinja2 (Python)
▶ Nunjucks (JS)
▶ Both are mostly compatible
▶ Implements missing filters/directives in Brython
▶ Ensures compatibility with backend templates
▶ Supports easy theming
▶ Templates can be utilized by the CLI frontend:

▶ static websites
▶ data formatting

Libervia “Pages”

▶ Each directory corresponds to an HTML path
▶ Page code in page_meta.py includes:

▶ Name
▶ Access policy
▶ Template
▶ Methods for:

▶ URL parsing
▶ Data preparation
▶ Handling POST requests
▶ And other things

▶ Browser-specific code in _browser directory
▶ Final files hierarchy automatically generated

Code Example

Minimal Page

from libervia.web.server.constants import Const as C

name = "calls"
access = C.PAGES_ACCESS_PROFILE
template = "call/call.html"

Browser Code

import json

from bridge import AsyncBridge as Bridge, BridgeException
from browser import document, aio
import dialog

bridge = Bridge()

on_delete see next slide

for elt in document.select('.action_delete'):
elt.bind("click", lambda evt: aio.run(on_delete(evt)))

async def on_delete(evt):
evt.stopPropagation()
evt.preventDefault()
target = evt.currentTarget
item_elt = target.closest('.item')
item_elt.classList.add("selected_for_deletion")
item = json.loads(item_elt.dataset.item)

confirmed = await dialog.Confirm(
f"List {item['name']!r} will be deleted, are you sure?",
ok_label="delete",

).ashow()

if not confirmed:
item_elt.classList.remove("selected_for_deletion")
return

try:
await bridge.interest_retract("", item['id'])

except BridgeException as e:
dialog.notification.show(

f"Can't remove list {item['name']!r} from personal interests: {e}",
"error"

)
else:

print(f"{item['name']!r} removed successfuly from list of interests")
deletion effect

Demo Video

./fosdem_2024/list_delete_short.mkv

Debugging

Debugging

▶ Real Python tracebacks
▶ Sometimes JS exceptions
▶ We can use breakpoint and pdb!
▶ interpreter.Inspector

Performance Considerations

▶ Same order of magnitude as CPython (according to
documentation)

▶ Slower than JavaScript due to compilation + compatibility layer
▶ compiled JS is cached

▶ brython_stdlib.js is big (~4.5 Mb) but can be reduced or
fully removed

▶ Loading time (first time, then cache)
▶ from my experience and use case: absolutely acceptable, and

I’ve yet to optimize

Roadmap

▶ Enhance Brython Integration:
▶ Blog to social network UX evolution.

▶ Backend Code Reusability:
▶ Foundation for e2ee.

▶ Implement Full e2ee On Demand:
▶ Secure user communication.

▶ Experiment with Innovative Use of Python in Browser:
▶ The possibilities are vast: education, science, automation, etc.

Conclusion

Conclusion

Brython stands as a robust solution for integrating Python into web
development. It bridges the gap between backend and frontend,
promoting code reuse and efficiency.

Thank You!

▶ Brython: https://brython.info
▶ Libervia: https://libervia.org
▶ blog: https://www.goffi.org
▶ XMPP room: libervia@chat.jabberfr.org
▶ ActivityPub: @goffi@mastodon.social

Thank you for attending, happy web hacking with Brython!

	Alternatives
	How the Web Frontend Works
	Code Example
	Debugging
	Conclusion

